T3: Fundamentals of Data Converters

Yun Chiu

(chiu.yun@utdallas.edu)

University of Texas at Dallas Richardson, TX

Feb 19, 2023

Outline

- Quantization and Sampling
- Overview of Data Converter Architectures
- □ How To Measure Data Converter Performance?
- Nyquist-Rate ADC and DAC Architectures
- □ Circuit Building Blocks
- □ Redundancy
- Digital Correctability and Calibration
- □ ADC Figure-of-Merits
- Data Converter Papers to See This Year
- References

Data Conversion

Analog World

Digital World

□ Data converters bridge analog (physical) world and digital (virtual) world

Y. Chiu

T3: Fundamentals of Data Converters

Data Conversion

Three key functions involved: Filtering, Sampling, Quantization

Y. Chiu

T3: Fundamentals of Data Converters

QUANTIZATION

A Mathematical View

□ N = # of bits, V_{FS} = Full-Scale range, $\Delta = V_{FS}/2^{N} = 1 \text{ LSB}$, $b_i = \{0, 1\}$ □ Full-Scale range (V_{FS}) is set by reference voltage V_{ref}

Quantization Error

Assumptions:

- \Box N is large (Δ is small)
- \Box V_{in} » Δ and is active
- $\hfill\square$ ϵ is uniformly distributed
- $\hfill\square$ Spectrum of ϵ is white

Random" quantization error is usually regarded as quantization noise

Signal-to-Quantization Noise Ratio (SQNR)

□ For sinusoidal input with $V_{pp} = V_{FS}$

Ν	SQNR	
(bits)	(dB)	
8	49.9	
10	62.0	
12	74.0	
14	86.0	

- □ SQNR depicts the theoretical performance of an ideal converter
- Practical converter performance can be limited by many other factors
 - Noise: thermal, 1/f, supply/substrate/coupling, etc.
 - Distortion: DC & AC nonlinearities, measured by THD, SFDR, IM3, etc.
 - Metastability (ADC): comparator fails to resolve within time limit

SAMPLING

Sampling (quite some math)

OVERVIEW OF DATA CONVERTER ARCHITECTURES

Overview of ADC Architectures

SAR, $\Delta\Sigma M$, TI ADC array are popular lately!

Per-step resolving (Conv. time)

- □ N bits⁺ (1 step) \leftarrow fast
 - Flash
 - Folding
- □ 1 level (2^{N} steps) \leftarrow slowest
 - Integration (Serial)
- □ 1 bit (N steps) \leftarrow slow

SAR

- Algorithmic (Cyclic)
- □ M bits (N/M steps) \leftarrow medium
 - Pipeline
 - Subranging

□ Others

- Time interleaving
 → high-speed ADC array
- Oversampling + NS $\rightarrow \Delta \Sigma$ modulator

Y. Chiu

Overview of DAC Architectures

Nyquist-rate DACs (oversampling DACs skipped in this tutorial):

Topology Technology	Binary-weighted (B.W.)	Unit-element (U.E.)	Segmented (S.M.)
Resistive	R2R	Resistor string	N.C.
Capacitive	Charge redistribution (can support high speed [3])		
I-steering	N.C.	High speed	High speed & high resolution

- □ Some (fun or not so fun) facts about DACs:
 - Every ADC has a DAC built in!
 - DACs are conceptually straightforward, but tough to design or calibrate at high speed (GS/s+)!

PERFORMANCE MEASUREMENT OF DATA CONVERTERS

Data Converter Measurements

□ Static measurement of converter transfer function (TF)

- Differential Non-Linearity (DNL), Integral Non-Linearity (INL)
- Code Density Test (CDT)
- Dynamic frequency- / time-domain measurement of signal quality
 - Frequency domain techniques: FFT, SNR, SNDR (SINAD), SFDR, IM3 etc.
 - Time-domain techniques: Sine-fit

DNL AND INL

DAC Static Nonlinearity

Y. Chiu

T3: Fundamentals of Data Converters

DNL and INL (DAC)

□ DNL: deviation of a conversion step $(V_j - V_{j-1})$ from 1 LSB $(\Delta) -$ **Incremental** □ INL: deviation of the output (V_j) from ideal transfer curve – **Cumulative**

A More Realistic Measurement

- □ Measurement procedure:
 - □ Least-square fit transfer curve
 - □ Stretch fitted line to ideal position
 - □ Determine DNL and INL

□ MATLAB built-in function "detrend"

Σ(INL) = 0 – why?

□ In practice, endpoints of TF may not end up at 0 and V_{FS} - $\Delta \rightarrow$ Assumption: Gain error and Offset are of less concern than DNL and INL

ADC Static Nonlinearity

ADC static errors also include gain, offset, nonlinearity (DNL and INL), but
 Watch out for missing code and nonmonotonicity!

INL and DNL (ADC)

- □ Connect midpoints of treads to determine the INL profile (also "detrend")
- Direct TF measure requires a high-resolution DAC to produce/record the exact input analog values

Code Density Test

Apply a linear ramp to ADC input and collect the output code histogram

- Ball-casting problem: # of balls collected proportional to bin size (DNL)
- Missing codes \rightarrow DNL = -1
- Nonmonotonic codes
 ightarrow all lumped together, very misleading!
- □ Linear ramp is difficult to generate in practice → use filtered sinewave instead (but needs to correct the <u>bowl-shaped</u> density curve) Ref. [4]

FREQUENCY- & TIME-DOMAIN MEASUREMENTS

Spectrum of Quantized Signal

 \square N = 10 bits

$$\Box$$
 $f_{\rm s} = 8192, f_{\rm in} = 779$

□ 8192 samples, only $[0, f_s/2]$ shown

 $\hfill\square$ Normalized to the amplitude of V_{in}

□ Effective # of bits (sinusoidal):

□ FFT requires power-of-two number of samples to compute the spectrum □ f_{in} and f_s must be incommensurate, e.g., f_{in} and f_s are co-prime

Commensurate f_s and f_{in}

Repeated/periodic samples lead to periodic quantization errors, manifested as harmonic distortions

Spectrum Leakage

- □ Samples must include integer # of cycles of input signal
- □ Windowing can be applied to eliminate spectrum leakage
 - Tradeoff b/t main-lobe width and sideband rejection of different windows

Frequency-Domain Performance Eval

- Signal-to-noise plus distortion ratio (SNDR)

 ALL bins except input are noise + disto

 Total harmonic distortion (THD)

 Usually count first 10 HDs
 Spurious-free dynamic range (SFDR)
 Effective # of bits (sinusoidal):

 Enobe = SNDR 1.76 dB 6.02 dB
- □ High-order harmonics are aliased back, visible in band $[0, f_s/2]$
 - E.g., HD3 @ 779x3+1=2338, HD9 @ 8192-9x779+1=1182
- **Two-tone/IM3 test is useful for \Sigma\Delta M and DACs, but uncommon for Nyq. ADCs**

Sine-Fit: A Time-Domain Method

- Windowing, phase noise of signal/clock generator etc. can make frequencydomain SNDR measurement quite difficult
- □ If input is a sinewave, directly fit the measured (or simulated) samples to an ideal sinewave can yield accurate SNDR measurement (in MATLAB)
 - Nonlinear least-square fit by optimizing over (A, $\omega = 2\pi/T$, Φ)

Y. Chiu

NYQUIST ADC ARCHITECTURES FLASH, SAR, AND PIPELINE

Flash ADC – Exhaustive Search

- □ Massive parallelism
- □ Very fast (N bits/step)
- □ Reference ladder: 2^N equal-sized resistors
- □ Input compared to 2^N-1 ref. taps (V_j)
- $\Box \text{ Throughput} = f_{s}$
- \Box Complexity ~2^N
- Rarely used for more than 6-8 bits

Thermometer Code

Y. Chiu

T3: Fundamentals of Data Converters

Bubble / Sparkle Errors

- 3-input boundary det.
- Majority voting
- □ Gray code

Quantization – Long Division

The procedure is also known as binary (radix=2) search

Y. Chiu

Successive-Approximation (SAR) ADC

□ 1 comparator

□ 1 DAC

□ Some digital logic

- □ Serial architecture (1 bit/step) \rightarrow <u>NOT</u> built for high speed operation
- □ Hardware reuse / very efficient, minimal architecture

Binary Search: MSB Cycle

N = 3, FS = 1 V,
$$\Delta$$
 = 0.125 V, V_{in} = 0.735 V

①
$$V_X = V_i - 0.5V;$$

② if $V_X > 0$, MSB = 1, keep current $V_X \rightarrow V_X;$
otherwise, MSB = 0, restore $V_X \rightarrow V_X + 0.5V;$

Binary Search: MSB-1 Cycle

N = 3, FS = 1 V,
$$\Delta$$
 = 0.125 V, V_{in} = 0.735 V

① $V_X = V_X - 0.25V$; ② if $V_X > 0$, MSB-1 = 1, keep current $V_X \rightarrow V_X$; otherwise, MSB-1 = 0, restore $V_X \rightarrow V_X + 0.25V$;
Binary Search: MSB-2 Cycle

N = 3, FS = 1 V,
$$\Delta$$
 = 0.125 V, V_{in} = 0.735 V

① $V_{x} = V_{x} - 0.125V;$

② if $V_X > 0$, MSB-2 = 1, keep current $V_X \rightarrow V_X$;

otherwise, MSB-2 = 0, restore $V_X \rightarrow V_X + 0.125V$;

Modified Binary Search

Always use the same divisor but amplify the remainder / residue

Algorithmic (Cyclic) ADC

\Box Fixed comparison threshold (V_{FS}/2) + 1b DAC + 2X Residue Gain

- Comparison \rightarrow if $V_X < V_{FS}/2$, then $b_j = 0$; otherwise, $b_j = 1$
- Residue generation $\rightarrow V_o = 2 \cdot (V_X b_j \cdot V_{FS}/2)$

Y. Chiu

Pipelined ADC

- Concurrent stage operation
- □ Latency ~ k/2
- **D** Throughput ~ f_s
- \square Complexity ~ N
- ❑ Scalable to M-bit/stage (1≤M<N)</p>
- Power saving possible
 by stage tapering along
 pipeline

 \Box Algorithmic loop unrolled \rightarrow pipeline enables high conversion throughput

NYQUIST DAC ARCHITECTURES BW, UE, AND SEGMENTED

Binary-Weighted (BW) DAC

- □ Charge redistribution (CR) of a BW capacitor array \rightarrow very efficient architecture
- □ N-bit DAC requires N switching elements, w/ direct binary bits passthrough control
- □ Can be generalized to resistive, R2R and current-steering topologies

Midscale DNL / INL (MSB Transition)

Unit-Element (UE) DAC

- □ Inherently monotonic \rightarrow good DNL performance (what about INL?)
- □ ~2^N switching elements \rightarrow complexity \uparrow speed \downarrow for large N \rightarrow typically N≤8 bits
- Needs binary-thermometer decoder

Current-Steering DAC (UE)

 \Box Fast switching, inherently monotonic \rightarrow good DNL performance

 $\sim 2^{N}$ current cells decomposed into a ($2^{N/2} \times 2^{N/2}$) matrix of rows and columns

Segmented (SM) DAC

- A divide-and-conquer approach to tackle complexity of UE DAC
- \blacksquare # of switching elements ~2^M+L << 2^{M+L}

Comparison of DAC Architectures

Example: N = 12, M = 8, L= 4,
$$\sigma_{UE} = 1\%$$

Architecture	σ _{INL} [LSB]	σ _{DNL} [LSB]	# of switching elements
BW	0.32	0.64	12 (=N)
UE	0.32	0.01	4095 (≈2 ^N)
SM	0.32	0.057	259 (≈2 ^M +L)

DATA CONVERTER CIRCUIT BUILDING BLOCKS

T3: Fundamentals of Data Converters

Common Circuit Building Blocks

- DAC: resistive, capacitive, current types, unit-element, binary-weighted, segmented architectures – every ADC has a DAC built-in!
- <u>Comparator</u>: decision device, regeneration speed, metastability
- □ <u>Sample and Hold (S/H)</u> or <u>Track and Hold (T/H)</u>: CT-DT conversion J
- □ <u>Residue Amplifier (RA)</u>: closed-loop vs. open-loop, static vs. dynamic amplifiers
- □ <u>Reference and Biasing</u>: BGR, current mirror, on-chip / off-chip bypass
- □ <u>Clocking Circuits</u>: jitter critical for high-speed ADC and DAC (power consumption)
- Digital Logics: combinatory, sequential, memory, I/O, etc.
- □ <u>Input and Reference Buffers</u>: peripheral, critical, and power hungry (but often not included in the converter core)

Covered in

this section

COMPARATOR

Comparator: Decision-Making Device

□ Precise gain and linearity unnecessary → simple, open-loop, low-gain, and wideband Preamplifier (PrA) followed by Latch (positive feedback)

A Simple Comparator

- □ Preamp establishes a seed voltage for latch regeneration \rightarrow dominates offset
- Usually no return after regeneration starts

Latch Regeneration

Metastability

□ Comparator fails to produce valid logic output for tiny inputs \rightarrow metastability □ No decision is often worse than a wrong decision! (conversion may halt!)

Dynamic Comparator

- □ Starting with the static comparator (i.e., preamp + latch)
- □ First, add a PMOS cross-coupled pair in the latch to fully regenerate logic levels
- □ Second, turn the static preamp into a dynamic one

Dynamic Comparator

- □ Third, stack the two together for current reuse (to save power)
- □ Then, replace the crowbar by conspicuous PMOS reset (high) switches
- □ Lastly, completely reset ALL internal nodes to remove memory

Strong-Arm Dynamic Comparator

- Compact (PrA + latch)
- □ Fully dynamic operation
 → low power
- Single-phase clock (Low reset, high eval.)
- Both nodes ① and ② start @V_{DD}, end @Gnd → large CM kickback

MOS SAMPLE-AND-HOLD

Y. Chiu

T3: Fundamentals of Data Converters

© 2023 IEEE International Solid-State Circuits Conference

ZOH, S/H, and T/H

© 2023 IEEE International Solid-State Circuits Conference

MOS Switch Performance

- □ Tracking bandwidth limited by switch on-resistance R_{on} (consider clock bootstrapping)
- Clock Feedthrough (CF) and Charge Injection (CI) are network/clock/signal dependent
- Technology scaling improves T/H performance! (a.l.a. leakage allows)

Aperture Error and Bottom-Plate Sampling

Exact sampling moment (aperture) depends on input in top-plate sampler

□ Bottom-plate sampling avoids aperture error and CF+CI distortion by V.G. switching

Aperture Jitter

□ Aperture jitter limits sampler SNR especially at high frequencies

Y. Chiu

Evaluating T/H Performance

T3: Fundamentals of Data Converters

Clock Bootstrapping

□ Constant gate overdrive $V_{GS} = V_{DD} \rightarrow R_{on}$ independent of V_{in} to the first order (body effect, charge sharing) \rightarrow larger tracking BW, better linearity

REDUNDANCY (NO MULTI-STEP ADC WORKS WITHOUT IT!)

Comparator Offset in Pipelined ADC

□ Nearly <u>Zero Tolerance</u> (< 1 LSB) on comparator offset!!

Architectural Redundancy introduced by over-/under-range comparators

Y. Chiu

How Exactly Does Redundancy Work?

- ❑ Max tolerance of comparator offset is ±V_{FS}/4
 → simple comparators
- Key to understand redundancy:

Complementary **analog** and **digital** errors cancel each other w/ redundancy

Y. Chiu

From 1-bit To 1.5-bit Architecture

From 1-bit To 1.5-bit Architecture

- □ **<u>1.5-bit residue TF:</u>** 3 decision levels \rightarrow ENOB = log₂3 ≈ 1.58
- □ Max tolerance of comparator offset is $\pm V_R/4$
- Also known as Sweeny-Robertson-Tocher (SRT) division algorithm

Y. Chiu

1.5-bit Multiplier DAC (MDAC)

2X gain + 3-level DAC + summation all integrated
 Can be generalized to n.5-bit architectures

Ref. [7]

© 2023 IEEE International Solid-State Circuits Conference

2.5-bit MDAC

□ 4X gain + 7-level DAC + summation all integrated

Error-Free Conversion With Redundancy

- Comparator and residue amplifier offsets absorbed by Internal Redundancy
 - Error-free conversion when residue is confined in the range $[-V_R, +V_R]$
Pipeline Redundant Bits Assembly

Decision Vector: $\underline{D}_o = \{b_1, b_2, ..., b_k\},$ **Scalar Decision**: $D_o = f(\underline{D}_o)$

How Does Redundancy Work For SAR?

Y. Chiu

© 2023 IEEE International Solid-State Circuits Conference

Binary Search Revisited

Binary search is efficient, but displays zero error tolerance

Sub-Binary Search – Redundancy

Redundancy of sub-binary search can absorb intermediate decision errors

Y. Chiu

© 2023 IEEE International Solid-State Circuits Conference

Sub-Radix-2 Implementations

Y. Chiu

T3: Fundamentals of Data Converters

© 2023 IEEE International Solid-State Circuits Conference

Uniform Sub-Radix-2 SAR ADC

- Hard-coded radices dependent on the DAC capacitor ratios
- □ Minimal analog complexity, no additional decoding effort
- □ Suitable for high-resolution SAR ADC (that requires radix calibration)

SAR Redundant Bits Assembly

e.g., uniform radix 1.8

b ₄ =1	1 ·1.8 ⁴
b ₃ =0	0 ·1.8 ³
b ₂ =1	1 ·1.8 ²
b ₁ =1	1 ·1.8 ¹
b ₀ =0	0 ·1.8 ⁰
D _o	15.5

Decision Vector: $\underline{D}_{o} = \{b_{N-1}, b_{N-2}, ..., b_{0}\},$ Scalar Decision: $D_{o} = f(\underline{D}_{o})$

T3: Fundamentals of Data Converters

@ 2023 IEEE International Solid-State Circuits Conference

DIGITAL CORRECTABILITY AND CALIBRATION

T3: Fundamentals of Data Converters

Digital Calibration

- Many analog errors in data converters, e.g., offset, gain error, nonlinearity, can be corrected digitally, which is widely termed **Digital Calibration**
- Digital calibration (aka digital enhancement, digital assistance, self-healing) is an opportunity and gift presented by the Moore's law!

ADC Digital Correctability

 \Box Decision Vector **D**_o reveals more info about input than Scalar Decision D_o

□ A.I.a \underline{D}_{o} is unique (even D_{o} is not), a LUT can in theory be found to recover the input faithfully (i.e., mapping from A \rightarrow D must be unique, thus, reversible)

Residue Errors in Pipelined ADC (1.5-b)

□ Static errors:

- Capacitor mismatch/nonlinearity
- RA finite gain and nonlinearity
- □ S/H nonlinearity
- Dynamic errors:
 - RA slewing/settling error
 - □ Switch-induced errors
 - □ Reference settling error
 - Memory errors

Residue Errors in Pipelined ADC (1.5-b)

Simple parametric errors (e.g., capacitor mismatch) can be easily corrected with digital calibration

Residue Errors in Pipelined ADC (1.5-b)

Static nonlinearities (e.g., INL and DNL), dynamic errors (e.g., RA settling errors [25]), and even memory errors [26] can also be calibrated

Digital Calibration of Pipelined ADC

Analog pipeline

typically, α indicates inter-stage residue gain error while β indicates DAC capacitor mismatch errors

Digital Calibration of SAR ADC

□ DAC capacitors are subject to random mismatch → need to determine the exact values of bit weights $\{w_i\}$

EXPLOITING REDUNDANCY FOR DIGITAL BACKGROUND CAL.

T3: Fundamentals of Data Converters

Residue Gain Cal. (DAC Dither)

In steady state, analog gain (α) and digital gain inverse (α^{-1}) cancel exactly 2^{-k} $\leq \frac{1}{4}$ to avoid overflow, DAC adds 2 bits or more to accommodate dither

Residue Gain Cal. – Comparator Dither

- □ In steady state, analog gain (α) and digital gain inverse (α^{-1}) cancel exactly
- Arbitrary dither amplitude a.l.a. no overflow occurs

SAR Radix Cal. – Sub-Radix Dither

- Dither forces ADC traverse TWO redundant conversion paths randomly
- In steady state, accurate $\{w_i\}$ is identified s.t. D_o is indep. of T

Caveats of Background Cal.

- Vis-à-vis rule: what you see is what you get – model coefficients often depend on input statistics!
- PVT rule: error model coefficients often depend on P.V.T. variations!
- Complexity, memory, digital power...
- Convergence time (tracking speed)
- After all, solution needs to be practical and cost-efficient...

FIGURE-OF-MERIT (FOM) WALDEN, SCHREIER AND ALPHA FOMS

Precision-Speed-Power Tradeoffs

- ADC Power ~ Bandwidth or Sample Rate
- A. ADC Power (and Area) ~ Precision² (4^{ENOB}) for noise- or matching-limited design
 B. ADC Power (and Area) ~ Precision (2^{ENOB}) o.w.[®]

^{$\ensuremath{\circ}$} For example, a low-resolution flash ADC's power and area \sim its # of conversion steps = 2^{N} ($\geq 2^{ENOB}$)

Walden vs. Schreier FoM

- □ Schreier FoM:
 - Implicitly assumes Noise- or Matching-limited ADC of Scenario A
 - The dimension of FoM_s is dB → Schreier FoM naturally measures SNDR, or Performance, not just # of effective quantization steps
- □ Walden FoM:
 - Implicitly assumes Nyquist-rate ADC of Scenario B
 - The dimension of FoM_w is Joule/Conversion-Step → Walden FoM naturally measures Energy Efficiency

Walden vs. Schreier FoM

<u>Walden FoM</u>

□ A complete FoM vs. Performance rendering requires a 3D plot

Y. Chiu

Schreier FoM

© 2023 IEEE International Solid-State Circuits Conference

But Actually...

 $\alpha = 2 \rightarrow \text{design complexity}$ (scenario B)

 $= 6.02 \cdot \text{ENOB} + 10 \log_{10} \left(\frac{\text{BW}}{\text{P}} \right) + 1.76$ $= 10 \log_{10} \left(4^{\text{ENOB}} \right) + 10 \log_{10} \left(\frac{\text{BW}}{\text{P}} \right) + 1.76$ $= 10 \log_{10} \left(\frac{\mathsf{BW} \cdot 4^{\mathsf{ENOB}}}{\mathsf{P}} \right) + 1.76$

The common part between the two seemingly distinct FoMs is striking!

© 2023 IEEE International Solid-State Circuits Conference

Alpha FoM

<u>Performance</u> vs. <u>Efficiency</u> plot gives more info when comparing designs
 Given <u>Power</u>, <u>Performance</u> and <u>Efficiency</u> trade hyperbolically - <u>Alpha law</u>

Performance vs. Efficiency (PE) Chart

ADC PE Chart (1997-2023)

 $\alpha = 3$

ADC PE Chart: $\alpha = 2-4$

ADC PE Chart (1997-2000)

 $\alpha = 3$

ADC PE Chart (1997-2010)

ADC PE Chart (1997-2022)

ADC PE Chart (1997-2022)

Converter Papers to See This Year

Session 10 - Pipelined and Noise-Shaping ADCs:

- 10.1, 10.2 high-speed pipelined ADCs
- 10.4 high-resolution two-step SAR ADC with predictive level-shifting

Session 17 - High-Speed Data Converter:

- 17.3 -high-speed direct-RF DAC
- 17.4, 17.6 digitally calibrated time-interleaved SAR ADCs
- 17.8 high-speed time-domain ADC

References

- 1. W.R. Bennett, "Spectra of quantized signals," *Bell Syst. Tech. J.*, pp. 446-472, Jul. 1948.
- 2. Oppenheim and Schafer, *Discrete-Time Signal Processing*, 2nd ed., Prentice Hall, 1998.
- 3. D. Gruber et al., "A 12b 16GS/s RF-sampling capacitive DAC for multi-band soft-radio base-station applications with on-chip transmission-line matching network in 16nm FinFET," in *ISSCC*, 2021.
- 4. B. Razavi, Principles of Data Conversion System Design, IEEE press, 1995.
- 5. M. Shinagawa, Y. Akazawa, and T. Wakimoto, "Jitter analysis of high-speed sampling systems," *JSSC*, no 1, 1990.
- 6. A.M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline ADC," JSSC, Mar. 1999.
- 7. S.H. Lewis et al., "A 10-b 20-MS/s analog-to-digital converter," *JSSC*, Mar. 1992.
- 8. F. Kuttner, "A 1.2-V 10-b 20-MS/s nonbinary successive approximation ADC in 0.13-µm CMOS," in *ISSCC*, 2002.
- 9. W. Liu et al., "A 600MS/s 30mW 0.13μm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization," in *ISSCC*, 2009.
- 10. C.-C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," in *ISSCC*, 2010.
- 11. H.-S. Lee, D.A. Hodges, and P.R. Gray, "A self-calibrating 15 bit CMOS A/D converter," *JSSC*, no. 6, 1984.
- 12. S.-U. Kwak, B.-S. Song, and K. Bacrania, "A 15-b 5-Msamples/s low spurious CMOS ADC," JSSC, Dec. 1997.
- **13**. D. Fu et al., "A digital back-ground calibration technique for time-interleaved analog-to-digital converters," in *ISSCC*, 1998.
- 14. P. Kiss et al., "Adaptive digital correction of analog errors in MASH ADC's—Part II: Correction using test-signal injection," *TCAS-II*, Jul. 2000.

References

- **15.** J. Li and U.-K. Moon, "Background calibration techniques for multistage pipelined ADC's with digital redundancy," *TCAS-II*, Sept. 2003.
- 16. X. Wang et al., "A 12-bit 20-MS/s pipelined ADC with nested digital background calibration," in CICC, 2003.
- 17. Y. Chiu et al., "Least mean square adaptive digital background calibration of pipelined analog-to-digital converters," *TCAS-I*, Jan. 2004.
- 18. E.J. Siragusa and I. Galton, "A digitally enhanced 1.8V 15b 40MS/s CMOS pipelined ADC," in *ISSCC*, 2004.
- 19. J. McNeill et al., "Split ADC architecture for deterministic digital background calibration of a 16b 1MS/s ADC," in *ISSCC*, 2005.
- 20. Y.-S. Shu and B.-S. Song, "A 15b linear, 20MS/s, 1.5b/stage pipelined ADC digitally calibrated with signaldependent dithering," in VLSI, 2006.
- 21. B. Murmann and B. Boser, "A 12b 75MS/s pipelined ADC using open-loop residue amplification," in *ISSCC*, 2003.
- 22. C. Tsang et al., "Background ADC calibration in digital domain," in CICC, 2008.
- 23. A. Panigada and I. Galton, "A 130mW 100MS/s pipelined ADC with 69dB SNDR enabled by digital harmonic distortion correction," in *ISSCC*, 2009.
- 24. B.D. Sahoo and B. Razavi, "A 12-bit 200-MHz CMOS ADC," JSSC, Sept. 2009.
- 25. E. Iroaga and B. Murmann, "A 12 b, 75 MS/s pipelined ADC using incomplete settling," in VLSI, 2006.
- 26. J.P. Keane et al., "Digital Background Calibration for Memory Effects in Pipelined Analog-to-Digital Converters", *TCAS-I*, Mar. 2006.
References

- 27. A. Ali et al., A 12-b 18-GS/s RF sampling ADC with an integrated wideband track-and-hold amplifier and background calibration," in *ISSCC*, 2020.
- 28. W. Liu, P. Huang, and Y. Chiu, "A 12-bit 50-MS/s 3.3-mW SAR ADC with background digital calibration," in CICC, 2012.
- 29. R.H. Walden, "Analog-to-digital converter survey and analysis," *IEEE J. Select. Areas Comm.*, Apr. 1999.
- **30.** R. Schreier and G.C. Temes, *Understanding Delta-Sigma Data Converters*, Wiley, 2005.
- 31. B. Murmann, "ADC Performance Survey 1997-2022," [Online]: www.stanford.edu/~murmann/adcsurvey.html.