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What does power management do?

0 “Cook” the (battery/line) energy for the customers (like processors).
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Outline

[0 Introduction

[0 Basic Power Stage Selections
B Linear Low-Dropout (LDO) Regulator
B Switched-Capacitor Converter
B Switched-Inductor Converter
[0 Control Loop Designs
m PID Control
B Hysteretic Control
[0 Advanced Topologies and Techniques
B Resonant Switched-Capacitor Operation
B Multiple Interleaving Phase
B Switched-Capacitor-Inductor Hybrid Topologies
B Distributed Integrated Voltage Regulators

O Summary
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Fully Integrated Voltage Regulator (FIVR)

Source: Lion Semi

O Compact size, reduce number of pads, faster transient response, reduce IR
drop, fine-grained voltage domains.
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Dynamic Voltage and Frequency Scaling (DVFS)

O Decrease Vpp and F ¢ when the CPU is idle.
O Increase Vpp and F « when the CPU needs high performance.
[0 Transition time is also considered as wasting power.
[0 Fast-DVS can significantly save power.
Conventional
Slow- I vo[tage
DVS CPU demand "

time

Integrated Voltage Regulator

ol n bl

Source: W. Kim, Harvard

A

Fast-
DVS
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Fine-Grained Power Domains (Granular power)

Vbb1
Vbpsa

Vpp7
Vb2

Vops
Vb3
Vpps

0 Energy-efficient computing.
O Granular power needs FIVRs with small area and fast response.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators 8 of 78



FIVR Candidates

-

Off-Chip
DC-DC

[0 Basically three choices.

B Low dropout (LDO) regulator

]

FIVR
Voo1 [MInductive
Voos DC-DC

FIVR
VDD2

— FIVR
1 Vbos Capacitive
= | FIVR Vpos | DC-DC

VDD6

B Switched-capacitor (capacitive) DC-DC converter
B Switched-inductor (inductive) DC-DC converter

Yan Lu
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What we will cover in this tutorial.

The Load

!

Vrer D Control Loop Design

Vin D+ Power Stage Selection [—-e—¢
:
(]
(]
]
]
:
]
]

Power stage selection + Control loop design
for fully-integrated voltage regulator (FIVR)
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Outline

[0 Basic Power Stage Selections
B Linear Low-Dropout (LDO) Regulator
B Switched-Capacitor Converter
B Switched-Inductor Converter
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Basic Power Stage (Step-Down) Choices

Vour
9
-T -— C|_
VEA
Controller
— Vier

LDO Regulator

VOUT

Vin D—O—Oj S o—e
Crry — C,
ot oot

51+ SZ*

Controller

— Vier

Switched-Capacitor (SC)
or Capacitive DC-DC
(a.k.a. Charge Pump)

Sl* -SZ*

Controller

—C Vier

Switching-Mode or
Inductive DC-DC

Step-down (Buck)

Converter

Yan Lu
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LDO Characteristics

VOUT
VIN ®
1 | 1 [0 Power transistor operates in linear or saturation
=T - C. region, acts as a tunable resistor.
Vv
i —_ O Low efficiency. Efficiency = Vqoy1/Vin-
[0 Single pole power stage, easy to control.
Controller A Vier 0 No energy storage components (C or L), tiny.
[0 Fast transient response.
LDO Regulator L . :
9 [0 No switching activity (analog control), no ripple.
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Output Impedances of the PMOS and NMOS LDOs

Vin
Step-Up
Charge Pump NMOS LDO
-~ Ven
VRer FdsN
~% Vour
C I zn R
20 = T Nl e |
oN dsN SCL (1 i+ A(S)) . gmN
z = rdsP 7z = rdSN
Tol+s rapCr + A(S) - Eplap 1+ B G+ + A(S)) - g onTan
[ —— ———— -
Zop,LF ¥ 1/ A(S)" g\ Zop,HF ~ I/sC, ZoN,LF 1/ A(S) g L 2o r ¥ l/LS_C-L:_g_mIi)_:
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Analogue of Charge Pump

\Y
Vin D—O_Dl G o—e (:TU_T
Criy C. I, = '
] S: S; ) ) / ;-. \: |
C ; |1: =% rr
t
ontroller Veer Sy
——FLYa  Bottleneck
Fly capacitor is the cup or bottle. : \f (Switch)
The bucket is C,. AW

The load drain current from C,.
In fast switching, switch is the bottleneck.

OO0 0O O
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Transfer Charge Between Capacitors

~
s o
V, Ron V,
C C
Ir1 t; Ir> t,
vi [ YTy, v, [ Wy,
1 Ron _| Ron B
C1 C Cs C,

[0 To transfer charge between capacitors, the dissipation on the resistor (switch)
is irrelevant to the resistance!
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Charge Redistribution Loss (Hard Charging)

~
5 o oo
V, V, Y,
C G C G = m e m e m e m e .
- —a —a —a I
: : : : i Assume |
C1V1+C2V2:(C1+C2)V V=C1V1+C2V2 : €=6=C i
1 Gt+é | AV =050/ -7,) |
ECap = ECV : 1
1 We have |
1 1 I
E i = ECIVIZ + Ecszz : E, o = Epiiar = Epipa i
| 2 l = CAP? |
EFinal :_(C1+C2)V : - - I
2 | E\oss Is proportional to aV2, 1
1( CC ) e e e e e e i
ELoss = Elnitial _ EFinal = E[ﬁj(ﬂ _ 1/2 )
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Charge Redistribution Loss

Y e e e
v, 6o v, oo I Assume C, >> C,, then, V, barely changes
1 1 1 v 1 ' and C, can be considered as a voltage source.
G ¢ G C A current source is connected to C, as a load,

and V, refreshes C, periodically.

1
ELoss = E(I/l - I/Z)AQIN

V.+V.
ELoad =— 2 2 AQOUT

C, I, AQ, =A0,,r In steady-state
-?- -?- -?- — ELoad
1{ CC > 1 2 7 EtE
E,.=7| =5 |N-V) ==C¥-V)
2 C +C, 2 :(V1+V2)/2=V2,AVG
1 4 4

C, — o0 =2 (1 =7,)A0,,
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F----------------‘

Linear-VCR Topologies and Fibonacci Topology

O Dickson [0 Ladder

felglelel

VCR=(N+1)Vy, N: no. of flymg capacitors

1__
i
i

[0 Series-Parallel
VIN

3HHHP@

O Fibonacci (VCR = 2, 3, 5, 8, ...)
Vour
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SC Topology Comparisons

10 .
[0 Series-Parallel (SP) & SSL Impedance o E;iiiﬁof-F_Walton
B Using the capacitors more efficiently. - e ealle
B Large switch resistances in the series state. S 0 — - Doubler
B Suitable for capacitor limited case, like in FIVR. E
E FSL Impedance
O Cockcroft-Walton (Dickson) and Ladder E 10 N T T T o X
o p
B Perform better at fast switching frequency.
B Smaller equivalent capacitance compared to SP.
B Suitable for solution with large capacitance. 10° - -
10" 10’ 10° 10°
Switching Frequency [kHz]
O Fibonacci [M. D. Seeman, TPEL, 2008]

B Not good in both capacitor and switch usage.
B Suitable for scenarios with limited number of discrete capacitors.
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Switched-Capacitor (SC) Converter Characteristics

VOUT

Vin D—O_Oj S o—e
Crry — C,
R I

Sl* 52* =

Controller

— Vier

Capacitive DC-DC

O O

SC network acts as a tunable resistor, low efficiency.

Vour=VCRXV =I5, XT/aCgy, Where a is a topology
related factor.

Efficiency can be improved by having a proper
voltage conversion ratio (VCR).

More capacitors and switches for more VCRs.
Single pole power stage, easy to control.

Performances of both switches and capacitors
improve with advanced processes, easy to integrate.

Easy for multi-interleaving phase operation, reducing
input and output ripples.

Yan Lu
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Operation of a Buck Converter

51* -52*

Controller

Inductive DC-DC

Vour=DxVyy, Where D is duty cycle of the switch S;.
Vout iS @an averaged value of V.

Iout is an averaged value of I ;.

LC is a 2nd-order filter.

O 0O 0O O
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Switching-Mode Buck Converter Characteristics

VX VO )

Vin p—~ O
— C,
N
= - -
51 * 52*

N

Controller Vs
] N

Inductive DC-DC

N
N

Energy transfer between L and C is ideally lossless,
theoretically high efficiency.

But, its efficiency heavily depends on the inductor Q.
Inductor Q is limited by physical constrains.

Inductor has intrinsically larger DCR than a capacitor,
difficult to integrate.

Switching noises can be large.

High switching frequency (Fgy,) for smaller passives,
but with high switching losses.

The LC filter forms a two-pole power stage, needs
more complex compensation.
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Power Stage Characteristics Brief Summary

Vin 01 . Vour
—_— :: C|_
VEA
Controller Q Ve

LDO Regulator

Power transistor in linear
region, acts as a tunable
resistor, low efficiency.

No energy storage
components (C or L), tiny.

VIND—o—oj 5 o—e
Criy
N

51+ SZ*

Controller

Capacitive DC-DC

SC network acts as a tunable
resistor, low efficiency.

Discrete VCRSs.

Efficiency can be improved

i
l
l
l
l
l
l
l
l
|
|
|
|
|
GVREF =
|
|
|
|
|
l
l
l
l
l
l
|
by having a proper VCR. |

51+ -52*

Controller

Inductive DC-DC

Continuous VCR.
Efficiency heavily depends
on the inductor Q.

Inductor has intrinsically
larger DCR than a capacitor.
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Advanced Power Stage Choices

VOUT VOUT = :
VvV VvV
INDj_ ® IND—O_01 5 o—e E i
— — CL C|:|_y — C|_ | '
) 0
Veo | L ooty | i : L
Sy 5 sy s
) 0
) 0
Controller Q Ve Controller Ve = Controller AVier !
) 0
------------------------- b ettt

LDO Regulator Capacitive DC-DC Inductive DC-DC

|
|
. l ,
More caps and switches | More caps and switches
for more voltage ! for hybrid operation with
conversion ratios. l a smaller inductor.

Switched-Capacitor-Inductor
Hybrid Topology!
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Outline

O

O
N
N
N

[0 Control Loop Designs
m PID Control
B Hysteretic Control
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Basic Control Strategy for Each Selection

LDO Regulator Capacitive DC-DC Inductive DC-DC
VvV V('.)UT VvV VOUT VvV V('.)UT
IN 01L * IN D—o—01 S o—e IN D—06
- - C. Croy — CL Ly - C,
Vea G L
' Cosy sy | sy Sy |
Controller AV er Controller Vs Controller Vs
.............. SN AR, AN
E P S V D S \Y;
E VEa +—Vour: ¢ 0O EA Vour: ¢ 0 A Z-1Vour
: EA i i g | @ VCo P | @ FAPWMES EA
E Vel | B VRer! | < @ 3= Vrer
. Simply P O P U]
An Error Amplifier (EA) . Pulse Frequency Modulation i Pulse Width Modulation
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Proportional-Integral-Derivative (PID) Control

[0 The P path output is proportional to the current error.
[0 The I path integrates the past information.

—> P KpE(t)

r(t) e(t) u(t)
—»@7—- | KJf'e(x)dx
+ +

- +
—»1D Kpde(t)/dt

Plant

u(t) = K,e(t)+ K, jo e(x)dx + K, de(t)/dt

IThe plant is the
l | power stage that
lbemg controlled.

O The D path predicts the future based on the rate of change.

Yan Lu
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Bode Plots of PID Control Paths for an LDO

A dB 4

0 The I path is a low pass filter.
[0 The P path may have poles beyond the frequency of interest.

[0 The D path processes high freq. (HF) signal, so is vulnerable to HF noise.

Plant Total
+ —>
> ¥ > >

<
log-w
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Load Transient Responses with PI or PID Controls

Pl Control

VOUT

P Effect

PID Control

VOUT

| Effect
D Effect

| Effect
D Effect :

dv/dt : P Effect
- abs. dv

| Effect
[dv

lLoap | lLoap |
| Effect |
LDO
ILDO
D Effect [Y. Lu, EDSSC, 2019]
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LDO with Proportional (P) Control

Vv A Gain (dB)
N D Dominant Pole at Vg

Light Load

__po
Buffer )\‘ R

-T- Heavy Load \ p log-w
C|_ —— RL% ° (rad/s)»

0 \
Output pole dominant.
Push internal poles to HF with buffer.
Output current is proportional to the Vg error.
Fast, but poor accuracy.

VRer D—

OO0 0O O
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Gain (dB)

Example: LDO with Small-Gain Stages

Frequency (Hz)

[0 Increase the loop gain with multiple small-gain stages, advanced P control.

Yan Lu
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Error Amplifier Buffer Small-Gain Stage | Small-Gain Stage 2 Output Powgr
(EA) (B) (S1) (52) Stage Transistor
_______________________ (0S) (PT)
WIL W/L : WIL WIL k,WIL WIL k,WIL WIL I mWIL Vin
AL D T
Iy ! Vo
1 —
1
! Rp —
1
| | | 1]
| | I_,1 | |.,l L R, R,
1
. - ]
Magnitude Plot — (k, + DWIL (k, + DWIL I mWI/L
60 i T R R T a
U : L ) | Multiple small-gain stages
40 "' Loop gain improvement & !
------- a-——_n—_-_--l__-._-—_-..__-__——--u.__..du_-‘ |
N I " I '~ [ [N
I+ '] HI ] \q, = =14 H I+
20 I 1 1" 1 Ik\‘;;u [Ml HO, JSSC, 2010]
0 1 t '~ + UGF extension |
204 i L R Lttt I-bLHHL L
Ll Ll 1 1 1 (- L1 i1l
2
10° 10 10° 10 10* 10° 10



Integral (I) Control

A Gain (dB)
Vin D p Internal Dominant Pole
G
VRrer D—
Mp
|| Vour
po log-w
C.=—= R, (rad/S)
1 [ 0 LightLload - \\\4- teavy Load
0 Internal pole dominant.
O Vgyr error is integrated on an internal capacitor.
[0 Miller compensation lowers the dominant pole freq. with smaller capacitor.
[0 Low power, accurate, but slow.
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Example: LDO with Dual-Loop (PI) Control

{Gain_Loop-1 Gain_Loop-2 Gain_Loop-3 1

40 P T T T T T T T T S T (e 5_’75
.,’%‘N

o 201 A . . i SR _ UGF, =
) DC Gain1 = 21dB 600VIHz
'g 0_ ! (11 - | '4"-.‘:\,\,\ !
UJ "-,‘ \\

5

R -20 >,

10° 10" 10° 10°

10" 10° 10° 10" 10® 10° 10™
Frequency (Hz)

0 Realize PI control with one fast (P) loop and one slow (I) loop.
0 The flipped-voltage follower (FVF) forms the P path.

O Cg is an integrator.

[Y. Lu, ISSCC, 2014]
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Derivative (D) Control

Y A Gain (dB)
IN D Derivative Function

|<— pe K Pe

Mp log-w
/ : \ (rad/sL

[0 A derivative path is a high-pass path, contributes a zero.

0 The high frequency (HF) path is vulnerable to HF noise.
[0 Needs HF poles to attenuate the HF noise, then becomes a band-pass path.

VRer D—
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Example: LDO with a Differentiator

8

Vv
o)

Vrefo_\ ’ jTg_ I[M

C :
Vip ) G——l—_ i l b

i
e - . ﬂ S
Current I__. ° oV, , -
amplifier > 100
C, | |
7 =|oo f ! ¢
To., O i

Magnitude (dB)

out [ . . Zn =O R
| Differentiator | 1

[R. J. Milliken, TCAS-I, 2007]

O C; senses the slope of V,,r changes.
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Transistor-Level Schematic of the LDO with Differentiator

V.

o | B B —— in
| '
On . O :
M Mﬂ: '
(i -
S ED G M Gl
o T M) | :
:: ] Hvoul
Vref 0_‘ l—OV,b ,IMs:l Me C :
o T
(| === S | SRS b
il e Tl T o
{ : R, : " (on-chip load
?I , f2 12 capacitance
:I E !| :H_ : 0-100 pF)
M, Mo Moe M| 1L My M '
e e e e ——— |
Error Amplifier Compensation Circuitry [R. J. Milliken, TCAS-I, 2007]

O R¢transforms the C; transient current into a voltage, helps to lower the
differentiator’s input impedance, pushing the added pole to higher frequency.
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Digital Low Dropout Regulator (Digital LDO)

Vix —
D ¢ ¢ T
VRer D[1:n] I: |
- Bi-Directional
’:|+J->_ Shift R;sgister‘ | . I
Vour
Voltage D—e

Reference| CLK Co I RL%
L -— -—

= Digital LDO Regulator

v Low voltage operation (<0.6V)

v Benefit from process scaling

v' Easy cooperation with digital loads

x Not energy-efficient for the power-speed tradeoff

Limit cycle oscillation (LCO)
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Shifter-Register-Based Digital LDO (I Control)

Vi (0.5V) _ .

O Regulating the Vo r by controlling T On chip | Off chip
the number of on/off switches. :
O Change one switch per clock cycle. Serial-in :
. . . . . rallel-out [ I
O The shifter register (SR) is a digital Compout|Pi-directiona dC.. |
integrator. (oﬁ?irfl__[?—’ " Fig. 400 d[l:

I Vour
*—o

Clk O—=&
(1MHz)

l (0.45V)
Switch array 100n% Loao
;L (200pA)

Compout
Clk -
Set ®

[Okuma, CICC, 2010]

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators 39 of 78



Example: DLDO with PI Control

. P> En Digital
Crer[4:0]75 Cc?rﬁ‘:;a"'er = Rst Controller
Cipr[4:0] —> Init[2:0]
4
= Ve Comld:0] Coarse Loop
Changer E CMF ADC ,/ .
Vie
En = 50.bit Mep
Clk=»| Shift
N * Register
I >sel u'y
Vrer O—1+ "T l Ier
:‘;[241:” ) Vout
ine Loop
U, = Iy pr +lspr = 40MAX Cypr[4: 0]+ 2mAX Cgpr[19: 0] == = = [Y 'J . Lee )} J S S C ; 2 O 1 7 ]

[0 Shift-register based loop for fine tuning (I control).
[0 Flash-ADC based loop for coarse tuning (P control).

O Reference changer compensates the V,,; error that comes from the P control.

Yan Lu
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Example: DLDO with PI Control

Vin
ERROR.
v . 5 iy
REF[6:0] = O 3 e
T % © P TRIG = E‘:H
: .
ADC| LV | = 2 LTRIG S
2 STICKING T 2"-sized
o power

transistors

= 1 I I
ADC —
ADC_REFRESH;q| e LOADja.0; =‘ Cour

[D. Kim, ISSCC, 2016]
L [D. Kim, JSSC, 2017]

[0 Continuous-time ADC: 7-bit thermometer-coded.
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Example: DLDO with PID Control

Ke[3:0] Ki[3:0] 2"sized Power Transistors
»[ DT |tH(6:0 Synchronous PSYN[14:0] | PMOS
—
Error_LV[6:0] LADC Pl Controller Header
I FF_Error[15:0] lError[S:O] UndErihoot mitigation
Clock |CLK_Mode| Clock/Trig | Check_Steady | Steady State Il
CLK | Generator Controller Detector PMOS
Trig_Block FF_Error[15:0] Trig[1:0] .
rovm WWIL0 v 1 i PASYN[14:0)| Hoader |1
VISV CT [evio Asynchronous —
"IADC Feedforward Controller NASYN[14:01| NMOS
= ~ . Footer |1 1
- / =~ _ Overshoot mitigatioTrl
r’_/_ o e e e = = = = = = e = = - —— - .
Trig_Block : FF_Error{15:0] |
: Keee[3:0] 1 - | 0. 1 n F g
— Pulse Slope »| Error Keen[3:0] | wh o]
EV[1:0] Trig[1:0 P SL[3:0] Shifter Cour || 2
VIO Generator |TE[10]|  petector 1 Encoder |sL_Error(6:0] w: T L
' i =

[0 Asynchronous slope detection (D).
[0 Synchronous PI control.

Slope_LV[3:0
_—

Vour

Pulse
Generator

Slope_LV[3]

Slope_LVI[0]

L VSP - Slope_LV[3:0]

Slope: 5L[3:0] = —=—=F Delay

[S. J. Kim, SSC-L, 2018]
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Control Loops: Analog, Digital, Hybrid

VRer
] SR Vs I 4 Digital | + Analog D
A '-->
0 Po Pc PoPc
e N > E : & c:
; CLK E 5
' AW [ -"=="" ‘
; R Vssg (I:' High PaSS.
‘cessasaas V C C
ouT
— AA Digital CL :T: RL% [M. Huang, ISSCC 2017]
— Conventional - L [M. Huang, JSSC 2018]

[0 Using a high pass analog path to assist the slow digital loop.
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Analog-Assisted (AA) NMOS Digital LDO

2x\op

Voo L| Charge
Pump
VRer
o—+ SR
1B A
= g
i@  CLK

4
CB — RC% VDD

NAND-based
AA Path (NAP)

. 2xVDD
e VDD
i i

O A. NMOS intrinsic response (P)

: c
M1 Ny
=D
gus===" . lA Rlé ® II_EINI
Vep E@ ”CC ¢ I v
g 11 T Vep 1
""""""" V ¢ 11 Vour
ouT 'I M, C
C l R % Din=1 Ii- -
'-I L VDD

O 1. NAND-based AA path (D)
[0 2. Digital control loop (I)

[X. Ma, ISSCC 2018]
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Example: Analog-Digital Hybrid LDO

Vin

High
ld.Bund\\idth

Small Signal Run=Time
Regulation

Vrer

10-20%
Load Current

Large Signal Transient
Controller
Scan
Programmable

Noise
Generator

[S. B. Nasir, ESSCIRC, 2016]
[S. B. Nasir, JSSC, 2018]

0 Small-signal analog.
O Large-signal digital.
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Example Summary of LDO Control Techniques

Category Publications Techniques

Analog P Ho, JSSC 2010 Small-gain stages

Analog PI Lu, TCAS-I 2015 Dual-loop with fast FVF

Analog PID Milliken, TCAS-I 2007 Differentiator

Digital 1 Okuma, CICC 2010 Shift-register based

Digital PI Lee, ISSCC 2016 Flash ADC with reference changer
Kim, ISSCC 2016 Multi-bit ADC and digital PI

Digital PID Kim, SSC-L 2018 Slope detector

Digital I + Analog P

Nasir JSSC 2018
Huang, CICC 2019

Small-signal analog
Fast and adaptive analog

Digital I + Analog D

Huang, ISSCC 2017

Analog-assisted (AA) digital

Digital I + Analog PD

Ma, ISSCC 2018

NAND-based AA NMOS LDO

Yan Lu
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Bode Plots of PID Control for Buck Converter

A
dB | voltage-Mode Buck in ccm [

X ? st>
\

The LC filter in continuous-
conduction mode (CCM) has
a pair of complex poles.

N T log-w
' N4 - | O Current-mode control uses
P Plant Current-Mode Buck in CCM the inductor current
+ — information, complex pole
-3 § >\ X lomeo pair turns into two separated
y o e \ real poles, one related to R,.
D “® BuckinBEM 1 Discontinuous-conduction
//x— . _ mode (DCM) operation only
\ log-w has a small inductor, of
which the dynamics occur at
HF, above or just below Fg.
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Loop Compensation for Buck Converter

Vour Vour
O Type-I: I Control ¢ R,
N Slmple, slow. Vea BVour BVour
B Need large compensation cap. Vrer

B Unity-gain freq. (UGF) limited to ~10x < Freg (.
Vour
O Type-II: PI Control

m 1 zero compensates 1 pole.

B Used for current mode or DCM.

m Not for voltage mode CCM.

BVOUT

O Type-III: PID Control

B 2 zeros compensate complex pole pair.
B For voltage mode, extend the UGF > Fpeg (.
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Hysteretic Control (Bang-Bang Control)

Vour O Replace the compensator and PWM generator

Vin p—" with simply a hysteresis comparator. React
- C, immediately when Vg1 < Vgege—A4, or > VigetA.
= = O Pros:
S1h 24 B Extremely simple, and extremely fast.
Controller B Low quiescent current.
_ — Vier
_______________ T O Cons:
S, (S m F,, varies with V;y and I, EMI issue.
= Vour:
PS8 O Solutions:
S P VRer _ o _
; O : B Adaptive hysteresis window tuning.
. Hysteretic Control 5 B Constant on-time control, D=Tg/T=Voyr/Viy-

------------------------------------
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Outline

O
O
N
N
N
O
N
N

[0 Advanced Topologies and Techniques

B Resonant Switched-Capacitor Operation
B Multiple Interleaving Phase
B Switched-Capacitor-Inductor Hybrid Topologies
B Distributed Integrated Voltage Regulators
[
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Root-Mean-Square (RMS) Current

[0 Sinusoidal current i A

B Iouss = Iavg X 1.11 //\ \/\/\ ave

O Triangular current Itt) 4

B Iyt = Iayg X 1.155 //\\//\\//\\ lavs

[0 Duty-cycled (D) current () 4

B Ipws,p = Tave / DY? | lave
O Conduction loss = Igus?R
B 1.112=1.232 (Sinusoidal) I(t)T k
B 1.1552 = 1.334 (Triangular) |_| lave

B 1.4142 = 2 (Pulse D=0.5)
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Charge Redistribution with a Resonant Inductor

Y Y
v, s o v, vy G o Jim“\— v,
—— Ron - i Ron Lres
C1 cz cl CZ

C1 Cz C1 CZ

Vl \ tRES /\/\
tres /\/ V, /
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Charge Redistribution with a Resonant Inductor

~
G o ‘mm‘—
V, Vo lges
| Ron Lres 1 tRes
C C
= T Vi
—,

Ron=0 Lres
€. ¢ M\
= -4 Vs,

O No hard charging and no loss in the ideal resonant case.
[0 Soft charging.
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Resonant SC (ReSC) Converter

\IHWIZ

O 2:1 SC Converter

T

® VOUT

by ]

1

O Hard charging

=

\hN

i
1

LRES

IOUT

C.

™
| 3 AVAA
= Cres o—’UUU‘—_IVOUT

LRES

CRES

Vi
IOUT
AVAVA

\IOUT

1

g
1

0 2:1 Resonant SC Converters

[0 Soft charging

Yan Lu
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Output Impedance of a Resonant SC Converter
[K. Kesarwani, ISSCC, 2014]

JV.N
IOUT
2 AN

Lres E B
Vour

Cres — |
<
_:L SC Limit

ReSC Limit

FEE———| L L PR S —— i n L PR S S
& 10" 10° 10'
Normalized Switching Frequency

10

O ReSC converter achieves the same Ryt as SC converter at much lower Fgy,.
O Resonant operation allows Cges to have much larger AV, compared to C; in SC.
O But, the maximum output capability is limited by Lggs.
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Ripple Effect

SC DC-DC converter with [-- — - Sliced into multiple cells
one bulk power stage - and controlled by

interleaving phases

f w = IZWI( |
'I: Vin
' VIN |
( lVOUT | B VOUT
k -— | Load _Eo/ -= | Load
C. - C.
Vour,max 4
Wasted :{> Ripple Reduction v
INNNNNNNNNNNNNNNNN
Vour,min out

[0 Any voltage higher than Vg1 vy is Wasted.
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Multiphase-Interleaving DC-DC Converters

[0 Reduce output voltage and input current ripples.

[__ —~ <"~ | Switched-Capacitor [ — | Inductor-Based
[ — DC-DC Converter [ || DC-DC Converter

ﬂ“’fﬁl iy

| | . VOUT < j . VOUT
'l:( J I Load B ] T | I Load
" 1 "
v Fully-on-chip, multi-phase x One L for each phase
x Efficiency (like linear regulator) - Efficiency (ideally 100%, but need high Q)
v First-order power stage (Potential for - LC second-order filter (Complex
fast control loop) compensator)
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Extending the Loop Bandwidth Beyond Fg,

F-to-V
SCPC

Buffers V-to-F

REF
VppCO
Pa1r Per Pe2 Pc Kyco
pAZ
SCPC I
Tir\x/ \:rout Vout(f)=Kscpcxf

[0 The control loop bandwidth can be extended beyond FSW with multi-interleaving
phase operation.

[Y. Lu, ISSCC, 2015]
*SCPC: Switched-Capacitor Power Converter [Y. Lu, JSSC, 2017]
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Non-Ideal Effects of the Fully-Integrated SC

(@
=

m
=
<

2\

(@
o
N

0°
o
] s

[0 Parasitic loss
B Parasitic capacitor of the on-chip capacitors is about 5% of the main capacitor.
B High density capacitor helps.
B Topology dependent.
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Parasitic Insensitive Topology

Summation Mode

Subtraction Mode

. Jiang, ISSCC, 2015]

Vin Vin
L Vour OCZ_'L Vour C1 Vour
Vour Cc ‘ | ‘ |
c_:r c O . C4 C, c c ‘Li CL C, Cp1 l C,
l p L pi l:E ‘ I L p1$ I l l
¢2 (D1 ¢2
CAP Sum Sum Voltage Sub Sub Voltage
D, oD, Swing D, oD, Swing
Coich 2/3Vy GND 2/3V:n GND 1/3Vy 1/3V;y
Co20o 1/3Vy GND 1/3Vy 1/3Vy GND 1/3Vy
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Parasitic Insensitive Topology

v Summation Mode Subtraction Mode

IN IN

01 C1 VOUT Oczj- VOUT C1 VOUT
C2 VOUT C

° T - Cu c-E:FIi[Z
T R

D, D, D, o, [J. Jiang, ISSCC, 2015]
:g 111.8% Vin=2V
1 A ) S R I . =~ |Vour=600mV

e 10.7% 1

:_ / —e— Subtraction Mode fs=100MHz

£ 30+ —=— Summation Mode fs=100MHz

W a0 —-— Subtraction Mode fs=60MHz ]
10+ —— Summation Mode fs=60MHz

]
20 40 60 80 100 120 140 160 180 200 220

Current Density (mA/mm?)
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Subtraction-Mode SC

O O

Modified series-parallel topology.

Subtraction-mode SC converters
with parasitic loss reduction.

Different capacitor voltages on each - - —--=222-222 220 S sy
Cruy-

—_— e o — — — — — — — — — — — — i — o —— —_—— e — — — -

| | |
Vin ¢1 ¢2 ' Vin ¢1 Vin ¢2 |
STy OF To | YOy oL
TR T T Ty
| cJ— iE o= C. C: Cslg
T g T T '
-7 L AN - AR - )

)
[J. Jiang, TPEL, 2020]
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Parasitic Reduction Techniques (1/3)

SID Vi
? R1
' S L N-ta
N _l_c |D_
N-well . 1
P-substrate Tcw

G

Vi

e R1

o

N-well

[0 Use a large resistor R1 to bias the N-well, making the N-well “floating”.
O Then, parasitic cap is dominated by C,, (<<C,).

[H.-P. Le, ISSCC 2013]
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Parasitic Reduction Techniques (2/3)

P-type MOS Capacitor . Equivalent Circuit
(i)VlN :
Top O—¢ Viias i Channel Gate Vin
Bottom O 2X V| Voltage | ¢+ 9 % ?
Doubler : ?
1 ICeLG _ : g == Voltage
N| |P—=E Pl IN ; Rc/2 | Rc/2 Doubler
To. Re P —W——W\—
be P-well ~° R, CAIT b ; - Vhias
Buried-N+ (Deep N-well ]' et | 2XVin
P-substrate : RJ2 RJ2

O C,,: Reduced by on-chip voltage doubler.
[J. Jiang, ISSCC, 2015]
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Efficiency Improvements with Reverse Bias Voltage

85 [ \ \ \ | \
—o— Current Density@56mA/mm?
. 2 . -
80 —o— Current Density@109mA/mm O >3% efficiency improvement for
| reverse bias voltage changes
3} /IV from 2.5V to 5V.
275 i O Another >3% i tf
> g | nother >3% improvement for
S / voltage changes from 5V to 6.6V.
'C 70 i
= |
LL] 5/ |
65 Directly biased !On-chip doubler | Available ! Potential
by input voltage, | with 25V with 3.3V | higher voltages
(Vin) | standard 1/0 standard | from system
) !‘ devices ‘"I‘IO device‘sI -
60— A AN g
o 1 2 3 4 5 6 7 8 9

Reverse Biased Voltage (V) [J. Jiang, ISSCC, 2015]
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Parasitic Reduction Techniques (3/3)

N X X X

i

VDD

B5

- A
Il
|ﬁ|
VoD ]
2VDD e

24 oo Regular Bpd
2:1SC i s | e B
VSS Cpar
? — =
-
Core =
VSS

[0 Recycle parasitic charge between multiple phases.

B9
B8
B7
B6

B4

B3

X B2

Bl

Parasitic
Capacitor

Charging

—=& Vhigh

—® B,
—R B,

— Bi+1
—=a B,
—& B,

Discharging
—= Vhigh

—= B,

Parasitic . Brm-1

Capacitor

—& B
—a B
—& B,

—= B,
—& B,

—& Viow

'N. Butzen, JSSC 2017]
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Fully-Integrated SC Converter Considerations

0 For efficiency
B More VCR means high efficiencies across a wide input/output range.
B Choose parasitic-insensitive conversion topologies.
B Use parasitic reduction circuit techniques.

0 For output accuracy and efficiency
B Pulse-frequency modulation (PFM)
B Adaptive switch size for optimum efficiency and smaller ripple.
B Tuning the gate-drive voltage of the switches
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Multi-Level Hybrid DC-DC Converter

IOUT

_||: /\/\/\/\ Vin/2{ [* /\/\/\/\ _

=2 A

L,

\V} Vour - Vour
Vy ¢ fOUO\ ouT © VX .—m\l © — CF Vx '_,m‘j_
" 1 Vin/2

]

Vin/2 —
—l I: CLI . C.

0 Buck Converter

=
it

0 Buck with Stacked Switches [0 3-Level Buck

O Use low-voltage devices for O Smaller voltage swing on Vy
less switching losses O Smaller Al
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Integrated Inductors

Si Substrate PaCka c
on er ) g
bottom view

top view

T g
Magnetic Core -
]
e
[1=T1
w O In-package ai induct
n-package air-core inductor
Bmom — 0 2.5nH, Q=7.8 @70MHz
O On-chip magnetic inductor [C. Schaef, ISSCC 2019] O On-chip coupled LC resonator
O 1.5nH, Q=3.8 @100MHz O 7.7nH @47.5MHz
[H. K. Krishnamurthy, ISSCC 2017] [P. H. McLaughlin, ISSCC 2020]

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators 69 of 78



Distributed FIVR

N
/

LW—

S

[1+)

nsing point

/
IR Drop

Sensing point
.0

Sensing point
0

Sensing point
.0

Sensing point
.0

Multiple point-of-load regulators

Senmg.ﬁ@mt %
%

Sensing point
0

IVR

Sensing'point
(]

IVR

[0 Reducing the IR drop across a large area chip (>1mm).
0 Improving the droop during transient response.
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Distributed FIVR Examples

VREGC uREGs _]. vout l l | |
- Load Load Load
I'm -uﬂ . i- & 1 2 3
- lh' sy
¥ VsensB2 D11 AADLDO; AADLDO; AADLDO;

e LA J)

R N 1IN
- .m . {I’ 2.5mm

A "l' n u
z .‘;’;" Hll :::: - ":m! .
LT v 4 g_ﬂﬁ“ S

3.6mm

Loadg

i [BL50] .. /.[BLDG].. . [BLBO]
‘
Single Supply Voltage in Shared Power Grid

Light Load !

[0 Global + Distributed local r
O Switching linear regulator

[M. E. Perez, CICC, 2019] Neighboring cooperation [ Each works independently

Analog-assisted DLDO [0 Synthesizable DLDO
[Y. Lu, ISSCC, 2018] [S. Bang, ISSCC, 2020]
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Outline

O
O
N
N
N
O
N
N
O
N
N
N
N

O Summary

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators 72 of 78



(U0 GO G GD GD GD G GD GD GD GD G G G GD GD GD G G Gb Gb Gb G Gb Gb Gb Gb Gb G G» G e

Power Stage Characteristics Summary

Vin 01 . Vour
—_— :: C|_
VEA
Controller Q Ve

LDO Regulator

Power transistor in linear
region, acts as a tunable
resistor, low efficiency.

No energy storage
components (C or L), tiny.

VIND—o—oj 5 o—e
Criy
N

51+ SZ*

Controller

Capacitive DC-DC

SC network acts as a tunable
resistor, low efficiency.

Discrete VCR.

Efficiency can be improved

i
l
l
l
l
l
l
l
l
|
|
|
|
|
GVREF =
|
|
|
|
|
l
l
l
l
l
l
|
by having a proper VCR. |

51+ -52*

Controller

Inductive DC-DC

Continuous VCR.
Efficiency heavily depends
on the inductor Q.

Inductor has intrinsically
larger DCR than a capacitor.
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Summary

[0 For power stage selection between LDO, SC, and Buck converters, and their
control strategies.

B LDO and SC converter have a single pole power stage.

B Buck converter in CCM has a complex pole-pair, needs two zeros (PID, Type-III)
to cancel out the pole-pair, extending the bandwidth beyond the LC Fggs.

B Buck converter in DCM, or with current-mode control, can ignore the pole
associated with the power inductor, being like a single pole power stage.

B Hysteretic control is extremely fast, but has a varying Fgy.
B Multiple-interleaving-phase power stage helps to extend the loop bandwidth.

O For full integration:

m LDO is fast, tiny, and hot.
SC converter is friendly to process scaling, suffers from parasitic losses.
Inductor-based DC-DC needs a good inductor (a luxury for FIVR).
Switched-capacitor-inductor hybrid topologies alleviate the burden on inductor.
System-in-package solutions provide high Q passives.
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Knowledge Required for PMIC

Analog IC

Digital IC

Power Electronics

Power Device
Magnetics/Electromagnetics
Control theory

OOoO0o00oad

O

A multi-disciplinary area.
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Papers to See This Year

O

O

Session 17 “"DC-DC Converters” Relevant Papers:

17.1 A Two-Stage Cascaded Hybrid Switched Capacitor DC-DC Converter With
96.9% Peak Efficiency Tolerating 0.6V/us Input Slew Rate during Startup

17.3 A 1.25GHz Fully Integrated DC-DC Converter Using Electromagnetically
Coupled Class-D LC Oscillators

17.4 Peak-Current-Controlled Ganged Integrated High-Frequency Buck Voltage
Regulators in 22nm CMOS for Robust Cross-Tile Current Sharing

17.5 A 98.2%-Efficiency Reciprocal Direct Charge Recycling Inductor-First DC-
DC Converter
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THANK YOU FOR YOUR ATTENTION.

Questions?
Live Q&A Session:
Feb. 13, 2021, 8:00-8:20 am, PST

Email: yanlu@um.edu.mo
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