Fundamentals of Fully-Integrated Voltage Regulators

Yan Lu University of Macau, Macao, China <u>yanlu@um.edu.mo</u>

Live Q&A Session: Feb. 13, 2021, 8:00-8:20 am, PST

Yan Lu 路 延

Education

- South China University of Technology, Guangzhou, BEng, MSc, '06 & '09
- Hong Kong University of Science and Technology, Hong Kong, PhD, '13
- Experiences
 - Associate Professor, University of Macau, Macao, June 2020-
 - Assistant Professor, University of Macau, Macao, 2014–2020
 - Visiting Scholar, University of Twente, the Netherlands, 2013 Spring
- Research Interests
 - Fully-integrated voltage regulators
 - Wireless power transfer circuits and systems
- Awards
 - ISSCC 2017 Takuo Sugano Award for Outstanding Far-East Paper
 - IEEE Circuits and Systems Society Outstanding Young Author Award 2017
 - IEEE Solid-State Circuits Society Pre-doctoral Achievement Award 2013-14

What does power management do?

□ "Cook" the (battery/line) energy for the customers (like processors).

Outline

- Introduction
- □ Basic Power Stage Selections
 - Linear Low-Dropout (LDO) Regulator
 - Switched-Capacitor Converter
 - Switched-Inductor Converter
- Control Loop Designs
 - PID Control
 - Hysteretic Control
- Advanced Topologies and Techniques
 - Resonant Switched-Capacitor Operation
 - Multiple Interleaving Phase
 - Switched-Capacitor-Inductor Hybrid Topologies
 - Distributed Integrated Voltage Regulators
- Summary

Outline

Introduction

- □ Basic Power Stage Selections
 - Linear Low-Dropout (LDO) Regulator
 - Switched-Capacitor Converter
 - Switched-Inductor Converter
- Control Loop Designs
 - PID Control
 - Hysteretic Control
- Advanced Topologies and Techniques
 - Resonant Switched-Capacitor Operation
 - Multiple Interleaving Phase
 - Switched-Capacitor-Inductor Hybrid Topologies
 - Distributed Integrated Voltage Regulators
- □ Summary

Fully Integrated Voltage Regulator (FIVR)

Source: Lion Semi

Compact size, reduce number of pads, faster transient response, reduce IR drop, fine-grained voltage domains.

Dynamic Voltage and Frequency Scaling (DVFS)

- Decrease V_{DD} and F_{CLK} when the CPU is idle.
- □ Increase V_{DD} and F_{CLK} when the CPU needs high performance.
- Transition time is also considered as wasting power.
- Fast-DVS can significantly save power.

Fine-Grained Power Domains (Granular power)

- Energy-efficient computing.
- □ Granular power needs FIVRs with small area and fast response.

FIVR Candidates

- Low dropout (LDO) regulator
- Switched-capacitor (capacitive) DC-DC converter
- Switched-inductor (inductive) DC-DC converter

What we will cover in this tutorial.

Power stage selection + Control loop design for fully-integrated voltage regulator (FIVR)

Outline

Introduction

- □ Basic Power Stage Selections
 - Linear Low-Dropout (LDO) Regulator
 - Switched-Capacitor Converter
 - Switched-Inductor Converter
- Control Loop Designs
 - PID Control
 - Hysteretic Control
- □ Advanced Topologies and Techniques
 - Resonant Switched-Capacitor Operation
 - Multiple Interleaving Phase
 - Switched-Capacitor-Inductor Hybrid Topologies
 - Distributed Integrated Voltage Regulators
- □ Summary

Basic Power Stage (Step-Down) Choices

LDO Characteristics

LDO Regulator

- Power transistor operates in linear or saturation region, acts as a tunable resistor.
- □ Low efficiency. Efficiency $\approx V_{OUT}/V_{IN}$.
- Single pole power stage, easy to control.
- No energy storage components (C or L), tiny.
- Fast transient response.
- □ No switching activity (analog control), no ripple.

Output Impedances of the PMOS and NMOS LDOs

Analogue of Charge Pump

- □ Fly capacitor is the cup or bottle.
- $\Box \quad \text{The bucket is } C_L.$
- **The load drain current from** C_L **.**
- □ In fast switching, switch is the bottleneck.

Transfer Charge Between Capacitors

To transfer charge between capacitors, the dissipation on the resistor (switch) is irrelevant to the resistance!

Charge Redistribution Loss (Hard Charging)

Charge Redistribution Loss

Assume $C_1 >> C_2$, then, V_1 barely changes and C_1 can be considered as a voltage source.

A current source is connected to C_2 as a load, and V_1 refreshes C_2 periodically.

$$E_{Loss} = \frac{1}{2} (V_1 - V_2) \Delta Q_{IN}$$

$$E_{Load} = \frac{V_1 + V_2}{2} \Delta Q_{OUT}$$

$$\Delta Q_{IN} = \Delta Q_{OUT} \text{ In steady-state}$$

$$\eta = \frac{E_{Load}}{E_{Loss} + E_{Load}}$$

$$=\frac{(V_1+V_2)/2}{V_1}=\frac{V_{2,AVG}}{V_1}$$

Linear-VCR Topologies and Fibonacci Topology

SC Topology Comparisons

- □ Series-Parallel (SP)
 - Using the capacitors more efficiently.
 - Large switch resistances in the series state.
 - Suitable for capacitor limited case, like in FIVR.
- Cockcroft-Walton (Dickson) and Ladder
 - Perform better at fast switching frequency.
 - Smaller equivalent capacitance compared to SP.
 - Suitable for solution with large capacitance.
- Fibonacci
 - Not good in both capacitor and switch usage.
 - Suitable for scenarios with limited number of discrete capacitors.

[M. D. Seeman, TPEL, 2008]

Switched-Capacitor (SC) Converter Characteristics

Capacitive DC-DC

- □ SC network acts as a tunable resistor, low efficiency.
- □ $V_{OUT} = VCR \times V_{IN} I_{OUT} \times T / aC_{FLY}$, where *a* is a topology related factor.
- Efficiency can be improved by having a proper voltage conversion ratio (VCR).
- More capacitors and switches for more VCRs.
- □ Single pole power stage, easy to control.
- Performances of both switches and capacitors improve with advanced processes, easy to integrate.
- Easy for multi-interleaving phase operation, reducing input and output ripples.

Operation of a Buck Converter

- \Box V_{OUT} is an averaged value of V_X.
- \Box I_{OUT} is an averaged value of I_{L1}.
- \Box LC is a 2nd-order filter.

Switching-Mode Buck Converter Characteristics

Inductive DC-DC

- Energy transfer between L and C is ideally lossless, theoretically high efficiency.
- □ But, its efficiency heavily depends on the inductor Q.
- Inductor Q is limited by physical constrains.
- Inductor has intrinsically larger DCR than a capacitor, difficult to integrate.
- □ Switching noises can be large.
- □ High switching frequency (F_{SW}) for smaller passives, but with high switching losses.
- The LC filter forms a two-pole power stage, needs more complex compensation.

Power Stage Characteristics Brief Summary

Advanced Power Stage Choices

Outline

Introduction

- □ Basic Power Stage Selections
 - Linear Low-Dropout (LDO) Regulator
 - Switched-Capacitor Converter
 - Switched-Inductor Converter
- Control Loop Designs
 - PID Control
 - Hysteretic Control
- Advanced Topologies and Techniques
 - Resonant Switched-Capacitor Operation
 - Multiple Interleaving Phase
 - Switched-Capacitor-Inductor Hybrid Topologies
 - Distributed Integrated Voltage Regulators
- □ Summary

Basic Control Strategy for Each Selection

Proportional-Integral-Derivative (PID) Control

$$u(t) = K_{P}e(t) + K_{I} \int_{0}^{t} e(x)dx + K_{D} de(t)/dt$$

- □ The P path output is proportional to the **current** error.
- □ The I path integrates the **past** information.
- □ The D path predicts the **future** based on the rate of change.

Bode Plots of PID Control Paths for an LDO

- □ The I path is a low pass filter.
- □ The P path may have poles beyond the frequency of interest.
- □ The D path processes high freq. (HF) signal, so is vulnerable to HF noise.

Load Transient Responses with PI or PID Controls

Fundamentals of Fully-Integrated Voltage Regulators

LDO with Proportional (P) Control

- Output pole dominant.
- □ Push internal poles to HF with buffer.
- \Box Output current is proportional to the V_{OUT} error.
- **Fast, but poor accuracy.**

Example: LDO with Small-Gain Stages

□ Increase the loop gain with multiple small-gain stages, advanced P control.

Integral (I) Control

- □ Internal pole dominant.
- \Box V_{OUT} error is integrated on an internal capacitor.
- □ Miller compensation lowers the dominant pole freq. with smaller capacitor.
- □ Low power, accurate, but slow.

Example: LDO with Dual-Loop (PI) Control

- □ Realize PI control with one fast (P) loop and one slow (I) loop.
- □ The flipped-voltage follower (FVF) forms the P path.
- \Box C_B is an integrator.

[Y. Lu, ISSCC, 2014]

Derivative (D) Control

- □ A derivative path is a high-pass path, contributes a zero.
- □ The high frequency (HF) path is vulnerable to HF noise.
- □ Needs HF poles to attenuate the HF noise, then becomes a band-pass path.

Example: LDO with a Differentiator

\Box C_f senses the slope of V_{OUT} changes.
Transistor-Level Schematic of the LDO with Differentiator

R_f transforms the C_f transient current into a voltage, helps to lower the differentiator's input impedance, pushing the added pole to higher frequency.

Digital Low Dropout Regulator (Digital LDO)

- ✓ Low voltage operation (<0.6V)
- ✓ Benefit from process scaling
- \checkmark Easy cooperation with digital loads
- x Not energy-efficient for the power-speed tradeoff
- x Limit cycle oscillation (LCO)

Shifter-Register-Based Digital LDO (I Control)

- Regulating the V_{OUT} by controlling the number of on/off switches.
- Change one switch per clock cycle.
- The shifter register (SR) is a digital integrator.

Clk Set

Example: DLDO with PI Control

[Y.-J. Lee, ISSCC, 2016] [Y.-J. Lee, JSSC, 2017]

- □ Shift-register based loop for fine tuning (I control).
- □ Flash-ADC based loop for coarse tuning (P control).
- \Box Reference changer compensates the V_{OUT} error that comes from the P control.

Example: DLDO with PI Control

Continuous-time ADC: 7-bit thermometer-coded.

Example: DLDO with PID Control

- Asynchronous slope detection (D).
- □ Synchronous PI control.

Control Loops: Analog, Digital, Hybrid

□ Using a high pass analog path to assist the slow digital loop.

Analog-Assisted (AA) NMOS Digital LDO

Example: Analog-Digital Hybrid LDO

□ Small-signal analog.

□ Large-signal digital.

Example Summary of LDO Control Techniques

Category	Publications	Techniques	
Analog P	Ho, JSSC 2010	Small-gain stages	
Analog PI	Lu, TCAS-I 2015	Dual-loop with fast FVF	
Analog PID	Milliken, TCAS-I 2007	Differentiator	
Digital I	Okuma, CICC 2010	Shift-register based	
Digital PI	Lee, ISSCC 2016 Kim, ISSCC 2016	Flash ADC with reference changer Multi-bit ADC and digital PI	
Digital PID	Kim, SSC-L 2018	Slope detector	
Digital I + Analog P	Nasir JSSC 2018 Huang, CICC 2019	Small-signal analog Fast and adaptive analog	
Digital I + Analog D	Huang, ISSCC 2017	Analog-assisted (AA) digital	
Digital I + Analog PD	Ma, ISSCC 2018	NAND-based AA NMOS LDO	

Bode Plots of PID Control for Buck Converter

- The LC filter in continuousconduction mode (CCM) has a pair of complex poles.
- Current-mode control uses the inductor current information, complex pole pair turns into two separated real poles, one related to R_L.
- Discontinuous-conduction mode (DCM) operation only has a small inductor, of which the dynamics occur at HF, above or just below F_{SW}.

Loop Compensation for Buck Converter

- Type-I: I Control
 - Simple, slow.
 - Need large compensation cap.
 - Unity-gain freq. (UGF) limited to $\sim 10x < F_{RES,LC}$.
- □ Type-II: PI Control
 - 1 zero compensates 1 pole.
 - Used for current mode or DCM.
 - Not for voltage mode CCM.
- □ Type-III: PID Control
 - 2 zeros compensate complex pole pair.
 - For voltage mode, extend the UGF > F_{RES,LC}.

ουτ

βνουτ

Hysteretic Control (Bang-Bang Control)

□ Replace the compensator and PWM generator with simply a hysteresis comparator. React immediately when $V_{OUT} < V_{REF} - \Delta$, or $> V_{REF} + \Delta$.

Pros:

- Extremely simple, and extremely fast.
- Low quiescent current.

Cons:

F_{SW} varies with V_{IN} and I_{OUT} , EMI issue.

□ Solutions:

- Adaptive hysteresis window tuning.
- Constant on-time control, $D=T_{ON}/T=V_{OUT}/V_{IN}$.

Outline

- Introduction
- □ Basic Power Stage Selections
 - Linear Low-Dropout (LDO) Regulator
 - Switched-Capacitor Converter
 - Switched-Inductor Converter
- Control Loop Designs
 - PID Control
 - Hysteretic Control
- Advanced Topologies and Techniques
 - Resonant Switched-Capacitor Operation
 - Multiple Interleaving Phase
 - Switched-Capacitor-Inductor Hybrid Topologies
 - Distributed Integrated Voltage Regulators
- Summary

Root-Mean-Square (RMS) Current

- Sinusoidal current
 - $I_{RMS,S} = I_{AVG} \times 1.11$
- □ Triangular current ■ $I_{RMS,T} = I_{AVG} \times 1.155$
- Duty-cycled (D) current $I_{RMS,D} = I_{AVG} / D^{1/2}$

- $\Box \quad \text{Conduction loss} = I_{\text{RMS}}^2 R$
 - $1.11^2 = 1.232$ (Sinusoidal)
 - 1.155² = 1.334 (Triangular)
 - 1.414² = 2 (Pulse D=0.5)

Charge Redistribution with a Resonant Inductor

Charge Redistribution with a Resonant Inductor

No hard charging and no loss in the ideal resonant case.
 Soft charging.

Resonant SC (ReSC) Converter

- □ 2:1 SC Converter
- □ Hard charging

- □ 2:1 Resonant SC Converters
- □ Soft charging

Output Impedance of a Resonant SC Converter

[K. Kesarwani, ISSCC, 2014]

- \square ReSC converter achieves the same R_{OUT} as SC converter at much lower F_{SW} .
- **\Box** Resonant operation allows C_{RES} to have much larger ΔV , compared to C_F in SC.
- \Box But, the maximum output capability is limited by L_{RES} .

Ripple Effect

 \Box Any voltage higher than V_{OUT,MIN} is wasted.

Multiphase-Interleaving DC-DC Converters

Reduce output voltage and input current ripples.

- ✓ Fully-on-chip, multi-phase
- x Efficiency (like linear regulator)
- ✓ First-order power stage (Potential for fast control loop)
- x One *L* for each phase
- Efficiency (ideally 100%, but need high Q)
- *LC* second-order filter (Complex compensator)

Extending the Loop Bandwidth Beyond F_{SW}

The control loop bandwidth can be extended beyond FSW with multi-interleaving phase operation.

[Y. Lu, ISSCC, 2015] [Y. Lu, JSSC, 2017]

*SCPC: Switched-Capacitor Power Converter

Non-Ideal Effects of the Fully-Integrated SC

- Parasitic loss
 - Parasitic capacitor of the on-chip capacitors is about 5% of the main capacitor.
 - High density capacitor helps.
 - Topology dependent.

Parasitic Insensitive Topology

[J. Jiang, ISSCC, 2015]

САР	Sum Φ ₁	Sum Φ ₂	Voltage Swing	Sub Φ ₁	Sub Φ ₂	Voltage Swing
C _{p1(+)}	V _{IN}	$1/3V_{IN}$	2/3V _{IN}	$1/3V_{IN}$	2/3V _{IN}	$1/3V_{IN}$
C _{p1(-)}	2/3V _{IN}	GND	2/3V _{IN}	GND	$1/3V_{IN}$	$1/3V_{IN}$
C _{p2(+)}	2/3V _{IN}	$1/3V_{IN}$	$1/3V_{IN}$	V_{IN}	2/3V _{IN}	$1/3V_{IN}$
C _{p2(-)}	1/3V _{IN}	GND	$1/3V_{IN}$	$1/3V_{IN}$	GND	$1/3V_{IN}$

Parasitic Insensitive Topology

Subtraction-Mode SC

- □ Modified series-parallel topology.
- Subtraction-mode SC converters with parasitic loss reduction.
- Different capacitor voltages on each C_{FLY} .

Parasitic Reduction Techniques (1/3)

□ Use a large resistor R1 to bias the N-well, making the N-well "floating".

□ Then, parasitic cap is dominated by C_W (<< C_C).

[H.-P. Le, ISSCC 2013]

Parasitic Reduction Techniques (2/3)

 \Box C_w: Reduced by on-chip voltage doubler.

[J. Jiang, ISSCC, 2015]

Efficiency Improvements with Reverse Bias Voltage

- >3% efficiency improvement for reverse bias voltage changes from 2.5V to 5V.
- Another >3% improvement for voltage changes from 5V to 6.6V.

[J. Jiang, ISSCC, 2015]

Parasitic Reduction Techniques (3/3)

Recycle parasitic charge between multiple phases.
[N. But

[N. Butzen, JSSC 2017]

Fully-Integrated SC Converter Considerations

- □ For efficiency
 - More VCR means high efficiencies across a wide input/output range.
 - Choose parasitic-insensitive conversion topologies.
 - Use parasitic reduction circuit techniques.
- □ For output accuracy and efficiency
 - Pulse-frequency modulation (PFM)
 - Adaptive switch size for optimum efficiency and smaller ripple.
 - Tuning the gate-drive voltage of the switches

Multi-Level Hybrid DC-DC Converter

Buck Converter

- □ Buck with Stacked Switches
- Use low-voltage devices for less switching losses
- □ 3-Level Buck
- \Box Smaller voltage swing on V_X
- \Box Smaller ΔI_L

Integrated Inductors

Cross-sectional View

- On-chip magnetic inductor
- □ 1.5nH, Q≈3.8 @100MHz
- [H. K. Krishnamurthy, ISSCC 2017]

□ 2.5nH, Q≈7.8 @70MHz
 [C. Schaef, ISSCC 2019]

- t_{on} t_{off}
- On-chip coupled LC resonator
- □ 7.7nH @47.5MHz
- [P. H. McLaughlin, ISSCC 2020]

Distributed FIVR

- \Box Reducing the IR drop across a large area chip (>1mm).
- Improving the droop during transient response.

Distributed FIVR Examples

Global + Distributed local
 Switching linear regulator
 [M. E. Perez, CICC, 2019]

- Neighboring cooperation
- Analog-assisted DLDO
- [Y. Lu, ISSCC, 2018]

Single Supply Voltage in Shared Power Grid

- Each works independently
- □ Synthesizable DLDO
- [S. Bang, ISSCC, 2020]

Outline

- Introduction
- □ Basic Power Stage Selections
 - Linear Low-Dropout (LDO) Regulator
 - Switched-Capacitor Converter
 - Switched-Inductor Converter
- Control Loop Designs
 - PID Control
 - Hysteretic Control
- □ Advanced Topologies and Techniques
 - Resonant Switched-Capacitor Operation
 - Multiple Interleaving Phase
 - Switched-Capacitor-Inductor Hybrid Topologies
 - Distributed Integrated Voltage Regulators

□ Summary
Power Stage Characteristics Summary

Summary

- For power stage selection between LDO, SC, and Buck converters, and their control strategies.
 - LDO and SC converter have a single pole power stage.
 - Buck converter in CCM has a complex pole-pair, needs two zeros (PID, Type-III) to cancel out the pole-pair, extending the bandwidth beyond the LC F_{RES}.
 - Buck converter in DCM, or with current-mode control, can ignore the pole associated with the power inductor, being like a single pole power stage.
 - Hysteretic control is extremely fast, but has a varying F_{SW}.
 - Multiple-interleaving-phase power stage helps to extend the loop bandwidth.
- □ For full integration:
 - LDO is fast, tiny, and hot.
 - SC converter is friendly to process scaling, suffers from parasitic losses.
 - Inductor-based DC-DC needs a good inductor (a luxury for FIVR).
 - Switched-capacitor-inductor hybrid topologies alleviate the burden on inductor.
 - System-in-package solutions provide high Q passives.

Knowledge Required for PMIC

- Analog IC
- Digital IC
- Power Electronics
- Power Device
- □ Magnetics/Electromagnetics
- □ Control theory

□ A multi-disciplinary area.

Papers to See This Year

Session 17 "DC-DC Converters" Relevant Papers:

- □ **17.1** A Two-Stage Cascaded Hybrid Switched Capacitor DC-DC Converter With 96.9% Peak Efficiency Tolerating 0.6V/µs Input Slew Rate during Startup
- 17.3 A 1.25GHz Fully Integrated DC-DC Converter Using Electromagnetically Coupled Class-D LC Oscillators
- 17.4 Peak-Current-Controlled Ganged Integrated High-Frequency Buck Voltage Regulators in 22nm CMOS for Robust Cross-Tile Current Sharing
- 17.5 A 98.2%-Efficiency Reciprocal Direct Charge Recycling Inductor-First DC-DC Converter

References (1/3)

- W. Kim, M. S. Gupta, G. Wei, and D. Brooks, "System level analysis of fast, per-core DVFS using on-chip switching regulators," in *IEEE 14th International Symposium on High Performance Computer Architecture*, Feb. 2008, pp. 123–134.
- □ W. Kim, D. Brooks, and G.-Y. Wei, "A Fully-Integrated 3-Level DC-DC Converter for Nanosecond-Scale DVFS," *IEEE J. Solid-State Circuits*, vol. 47, no. 1, pp. 206–219, Jan. 2012.
- Y. Lu, W.-H. Ki, and C. Patrick Yue, "An NMOS-LDO Regulated Switched-Capacitor DC-DC Converter With Fast-Response Adaptive-Phase Digital Control," *IEEE Trans. Power Electron.*, vol. 31, no. 2, pp. 1294–1303, Feb. 2016.
- □ W.-H. Ki, F. Su, and C. Tsui, "Charge redistribution loss consideration in optimal charge pump design," in *IEEE International Symposium on Circuits and Systems (ISCAS)*, May 2005, pp. 1895-1898 Vol. 2.
- M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC #x2013;DC Converters," *IEEE Trans. Power Electron.*, vol. 23, no. 2, pp. 841–851, Mar. 2008.
- Y. Lu, M. Huang, R. P. Martins, "PID Control Considerations for Analog-Digital Hybrid Low-Dropout Regulators (Invited Paper)," in *Proc. IEEE EDSSC*, Jun. 2019.
- M. Al-Shyoukh, H. Lee, and R. Perez, "A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator With Buffer Impedance Attenuation," *IEEE J. Solid-State Circuits*, vol. 42, no. 8, pp. 1732–1742, Aug. 2007.
- M. Ho, K. N. Leung, and K.-L. Mak, "A low-power fast-transient 90-nm low-dropout regulator with multiple small-gain stages," *IEEE J. Solid-State Circuits*, vol. 45, no. 11, pp. 2466–2475, Nov. 2010.
- Y. Lu et al., "A Fully-Integrated Low-Dropout Regulator With Full-Spectrum Power Supply Rejection," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 62, no. 3, pp. 707–716, Mar. 2015.
- R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, "Full On-Chip CMOS Low-Dropout Voltage Regulator," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 54, no. 9, pp. 1879–1890, Sep.2007.
- Y. Okuma et al., "0.5-V input digital LDO with 98.7% current efficiency and 2.7-μA quiescent current in 65nm CMOS," in *Proc. IEEE CICC*, Sep. 2010, pp. 1–4.
- Y. J. Lee et al., "A 200-mA digital low drop-out regulator with coarse-fine dual loop in mobile application processor," *IEEE J. Solid-State Circuits*, vol. 52, no. 1, pp. 64–76, Jan. 2017.

References (2/3)

- D. Kim and M. Seok, "A fully integrated digital low-dropout regulator based on event-driven explicit time-coding architecture," *IEEE J. Solid-State Circuits*, vol. 52, no. 11, pp. 3071–3080, Nov. 2017.
- S. J. Kim et al., "A 67.1-ps FOM, 0.5-V-hybrid digital LDO with asynchronous feedforward control via slope detection and synchronous PI with state-based hysteresis clock switching," *IEEE Solid-State Circuits Lett.*, vol. 1, no. 5, pp. 130–133, May 2018.
- S. B. Nasir, S. Sen, and A. Raychowdhury, "Switched-mode-control based hybrid LDO for fine-grain power management of digital load circuits," *IEEE J. Solid-State Circuits*, vol. 53, pp. 569–581, Feb. 2018.
- M. Huang, Y. Lu, S. U, and R. P. Martins, "An analog-assisted tri-loop digital low-dropout regulator," *IEEE J. Solid-State Circuits*, vol. 53, no. 1, pp. 20–34, Jan. 2018.
- X. Ma, Y. Lu, R. P. Martins, and Q. Li, "A 0.4V 430nA quiescent current NMOS digital LDO with NAND-based analog-assisted loop in 28nm CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2018, pp.306–308.
- F. Su, W. Ki, and C. Tsui, "Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications," *IEEE Journal of Solid-State Circuits*, vol. 43, no. 4, pp. 815–822, Apr. 2008.
- K. Kesarwani, R. Sangwan, and J. T. Stauth, "A 2-phase resonant switched-capacitor converter delivering 4.3W at 0.6W/mm2 with 85% efficiency," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2014, pp. 86–87.
- C. Schaef, J. Rentmeister, and J. T. Stauth, "Multimode Operation of Resonant and Hybrid Switched-Capacitor Topologies," *IEEE Trans. Power Electron.*, vol. 33, no. 12, pp. 10512–10523, Dec. 2018.
- P. Renz, M. Kaufmann, M. Lueders, and B. Wicht, "A Fully Integrated 85%-Peak-Efficiency Hybrid Multi Ratio Resonant DC-DC Converter with 3.0-to-4.5V Input and 500µA -to-120mA Load Range," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2019, pp. 156–158.
- Y. Lu, J. Jiang, and W. H. Ki, "A Multiphase Switched-Capacitor DC-DC Converter Ring With Fast Transient Response and Small Ripple," *IEEE J. Solid-State Circuits*, vol. 52, no. 2, pp. 579–591, Feb. 2017.
- Y. Lu, J. Jiang, and W.-H. Ki, "Design Considerations of Distributed and Centralized Switched-Capacitor Converters for Power Supply On-Chip," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 6, no. 2, pp. 515–525, Jun. 2018.
- J. Jiang, Y. Lu, C. Huang, W.-H. Ki, and P. K. T. Mok, "A 2-/3-phase fully integrated switched-capacitor DC-DC converter in bulk CMOS for energy-efficient digital circuits with 14% efficiency improvement," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2015, pp. 1–3.

References (3/3)

- J. Jiang et al., "A dual-symmetrical-output switched-capacitor converter with dynamic power cells and minimized cross regulation for application processors in 28nm CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2017, pp. 344–345.
- J. Jiang, W.-H. Ki, and Y. Lu, "Digital 2-/3-Phase Switched-Capacitor Converter With Ripple Reduction and Efficiency Improvement," *IEEE J. Solid-State Circuits*, vol. 52, no. 7, pp. 1836–1848, Jul. 2017.
- J. Jiang, X. Liu, C. Huang, W.-H. Ki, P. K. T. Mok, and Y. Lu, "Subtraction-Mode Switched-Capacitor Converters With Parasitic Loss Reduction," *IEEE Trans. Power Electron.*, vol. 35, no. 2, pp. 1200–1204, Feb. 2020.
- H.-P. Le, J. Crossley, S. R. Sanders, and E. Alon, "A sub-ns response fully integrated battery-connected switched-capacitor voltage regulator delivering 0.19W/mm2 at 73% efficiency," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2013, pp. 372–373.
- N. Butzen and M. S. J. Steyaert, "Design of Soft-Charging Switched-Capacitor DC-DC Converters Using Stage Outphasing and Multiphase Soft-Charging," *IEEE J. Solid-State Circuits*, vol. 52, no. 12, pp. 3132–3141, Dec. 2017.
- N. Butzen and M. S. J. Steyaert, "MIMO Switched-Capacitor DC-DC Converters Using Only Parasitic Capacitances Through Scalable Parasitic Charge Redistribution," *IEEE J. Solid-State Circuits*, vol. 52, no. 7, pp. 1814–1824, Jul. 2017.
- H. K. Krishnamurthy et al., "A digitally controlled fully integrated voltage regulator with on-die solenoid inductor with planar magnetic core in 14nm tri-gate CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2017, pp. 336–337.
- C. Schaef et al., "A Light-Load Efficient Fully Integrated Voltage Regulator in 14-nm CMOS With 2.5-nH Package-Embedded Air-Core Inductors," *IEEE J. Solid-State Circuits*, vol. 54, no. 12, pp. 3316–3325, Dec. 2019.
- P. H. McLaughlin, Z. Xia, and J. T. Stauth, "A Fully Integrated Resonant Switched-Capacitor Converter with 85.5% Efficiency at 0.47W Using On-Chip Dual-Phase Merged-LC Resonator," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2020, pp. 192–194.
- M. E. Perez et al., "Distributed Network of LDO Microregulators Providing Submicrosecond DVFS and IR Drop Compensation for a 24-Core Microprocessor in 14-nm SOI CMOS," *IEEE J. Solid-State Circuits*, vol. 55, no. 3, pp. 731–743, Mar. 2020.
- Y. Lu, F. Yang, F. Chen, and P. K. T. Mok, "A 500mA analog-assisted digital-LDO-based on-chip distributed power delivery grid with cooperative regulation and IR-drop reduction in 65nm CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2018, pp. 310–312.
- S. Bang et al., "A Fully Synthesizable Distributed and Scalable All-Digital LDO in 10nm CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2020, pp. 380–382.

Acknowledgements

- I would like to thank my (Current and Previous) Colleagues for their significant contributions to this tutorial.
 - Mo Huang, Junmin Jiang, Xiaofei Ma, Chuang Wang, Xiangyu Mao, Lin Cheng, Wing-Hung Ki, Patrick Yue, and Rui Martins.
- And also thank the Tutorial Chair Ali Sheikholeslami (U. of Toronto) and Coordinator Harish Krishnamurthy (Intel) for their inputs and suggestions.
- □ Funding supports:

THANK YOU FOR YOUR ATTENTION.

Questions? Live Q&A Session: Feb. 13, 2021, 8:00-8:20 am, PST

Email: yanlu@um.edu.mo

