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What does power management do?

 “Cook” the (battery/line) energy for the customers (like processors).
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Source: eetimes.com

Power 
Management 
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Fully Integrated Voltage Regulator (FIVR)

 Compact size, reduce number of pads, faster transient response, reduce IR 
drop, fine-grained voltage domains.
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Source: Lion Semi
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Dynamic Voltage and Frequency Scaling (DVFS)

 Decrease VDD and FCLK when the CPU is idle.
 Increase VDD and FCLK when the CPU needs high performance.
 Transition time is also considered as wasting power.
 Fast-DVS can significantly save power.
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Source: W. Kim, Harvard

Fast-
DVS

Slow-
DVS
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Fine-Grained Power Domains (Granular power)

 Energy-efficient computing.
 Granular power needs FIVRs with small area and fast response.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators 8 of 78



FIVR Candidates 

 Basically three choices.
 Low dropout (LDO) regulator
 Switched-capacitor (capacitive) DC-DC converter
 Switched-inductor (inductive) DC-DC converter
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What we will cover in this tutorial.

Power stage selection + Control loop design 
for fully-integrated voltage regulator (FIVR)
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Focus of This Tutorial
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Basic Power Stage (Step-Down) Choices

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

LDO Regulator Switched-Capacitor (SC) 
or Capacitive DC-DC
(a.k.a. Charge Pump)

Switching-Mode or 
Inductive DC-DC

Step-down (Buck) 
Converter
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LDO Characteristics

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

LDO Regulator Capacitive DC-DC Inductive DC-DC

 Power transistor operates in linear or saturation 
region, acts as a tunable resistor.

 Low efficiency. Efficiency ≈ VOUT/VIN.

 Single pole power stage, easy to control.

 No energy storage components (C or L), tiny.

 Fast transient response.

 No switching activity (analog control), no ripple.
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Output Impedances of the PMOS and NMOS LDOs
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Analogue of Charge Pump

 Fly capacitor is the cup or bottle.
 The bucket is CL.
 The load drain current from CL.
 In fast switching, switch is the bottleneck. 
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CL

Load Current

CFLY

CFLY Bottleneck 
(Switch)
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Transfer Charge Between Capacitors

 To transfer charge between capacitors, the dissipation on the resistor (switch) 
is irrelevant to the resistance!
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Charge Redistribution Loss (Hard Charging)
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Charge Redistribution Loss
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Assume C1 >> C2, then, V1 barely changes 
and C1 can be considered as a voltage source.
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Linear-VCR Topologies and Fibonacci Topology 

 Dickson

 Series-Parallel

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

 Ladder

VCR=(N+1)VIN, N: no. of flying capacitors

 Fibonacci (VCR = 2, 3, 5, 8, …)

19 of 78



SC Topology Comparisons

 Series-Parallel (SP)
 Using the capacitors more efficiently.
 Large switch resistances in the series state.
 Suitable for capacitor limited case, like in FIVR.

 Cockcroft-Walton (Dickson) and Ladder
 Perform better at fast switching frequency.
 Smaller equivalent capacitance compared to SP.
 Suitable for solution with large capacitance.

 Fibonacci
 Not good in both capacitor and switch usage.
 Suitable for scenarios with limited number of discrete capacitors.
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[M. D. Seeman, TPEL, 2008]
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Switched-Capacitor (SC) Converter Characteristics
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Capacitive DC-DC Inductive DC-DC

 SC network acts as a tunable resistor, low efficiency. 

 VOUT=VCR×VIN−IOUT×T/ɑCFLY, where ɑ is a topology 
related factor.

 Efficiency can be improved by having a proper 
voltage conversion ratio (VCR).

 More capacitors and switches for more VCRs.

 Single pole power stage, easy to control.

 Performances of both switches and capacitors 
improve with advanced processes, easy to integrate.

 Easy for multi-interleaving phase operation, reducing 
input and output ripples.
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Operation of a Buck Converter

 VOUT=D×VIN, where D is duty cycle of the switch S1.
 VOUT is an averaged value of VX.
 IOUT is an averaged value of IL1.
 LC is a 2nd-order filter.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

Inductive DC-DC
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Switching-Mode Buck Converter Characteristics
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Inductive DC-DC

 Energy transfer between L and C is ideally lossless, 
theoretically high efficiency. 

 But, its efficiency heavily depends on the inductor Q. 

 Inductor Q is limited by physical constrains.

 Inductor has intrinsically larger DCR than a capacitor, 
difficult to integrate.

 Switching noises can be large.

 High switching frequency (FSW) for smaller passives, 
but with high switching losses.

 The LC filter forms a two-pole power stage, needs 
more complex compensation.
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Power Stage Characteristics Brief Summary

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

LDO Regulator Capacitive DC-DC Inductive DC-DC

Power transistor in linear 
region, acts as a tunable 
resistor, low efficiency.

No energy storage 
components (C or L), tiny.

SC network acts as a tunable 
resistor, low efficiency. 

Discrete VCRs.
Efficiency can be improved 
by having a proper VCR.

Continuous VCR. 
Efficiency heavily depends 

on the inductor Q. 
Inductor has intrinsically 

larger DCR than a capacitor.
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Advanced Power Stage Choices
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LDO Regulator Capacitive DC-DC Inductive DC-DC
More caps and switches 

for more voltage 
conversion ratios.

More caps and switches 
for hybrid operation with 

a smaller inductor.
Switched-Capacitor-Inductor 

Hybrid Topology!
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Basic Control Strategy for Each Selection

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

LDO Regulator Capacitive DC-DC Inductive DC-DC
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Proportional-Integral-Derivative (PID) Control

 The P path output is proportional to the current error.
 The I path integrates the past information.
 The D path predicts the future based on the rate of change.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators
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power stage that 
being controlled.
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Bode Plots of PID Control Paths for an LDO

 The I path is a low pass filter.
 The P path may have poles beyond the frequency of interest.
 The D path processes high freq. (HF) signal, so is vulnerable to HF noise.
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Load Transient Responses with PI or PID Controls
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[Y. Lu, EDSSC, 2019]
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LDO with Proportional (P) Control

 Output pole dominant.
 Push internal poles to HF with buffer.
 Output current is proportional to the VOUT error.
 Fast, but poor accuracy.
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Example: LDO with Small-Gain Stages

 Increase the loop gain with multiple small-gain stages, advanced P control.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[M. Ho, JSSC, 2010]
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Integral (I) Control

 Internal pole dominant.
 VOUT error is integrated on an internal capacitor.
 Miller compensation lowers the dominant pole freq. with smaller capacitor.
 Low power, accurate, but slow.
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Example: LDO with Dual-Loop (PI) Control

 Realize PI control with one fast (P) loop and one slow (I) loop.
 The flipped-voltage follower (FVF) forms the P path.
 CB is an integrator.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[Y. Lu, ISSCC, 2014]
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Derivative (D) Control

 A derivative path is a high-pass path, contributes a zero.
 The high frequency (HF) path is vulnerable to HF noise. 
 Needs HF poles to attenuate the HF noise, then becomes a band-pass path.
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Example: LDO with a Differentiator

 Cf senses the slope of VOUT changes.
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[R. J. Milliken, TCAS-I, 2007]
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Transistor-Level Schematic of the LDO with Differentiator
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 Rf transforms the Cf transient current into a voltage, helps to lower the 
differentiator’s input impedance, pushing the added pole to higher frequency.

[R. J. Milliken, TCAS-I, 2007]
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Digital Low Dropout Regulator (Digital LDO)

 Low voltage operation (<0.6V)
 Benefit from process scaling 
 Easy cooperation with digital loads
x Not energy-efficient for the power-speed tradeoff
x Limit cycle oscillation (LCO)
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Shifter-Register-Based Digital LDO (I Control) 

 Regulating the VOUT by controlling 
the number of on/off switches.

 Change one switch per clock cycle.
 The shifter register (SR) is a digital 

integrator.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[Okuma, CICC, 2010]
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Example: DLDO with PI Control

 Shift-register based loop for fine tuning (I control).
 Flash-ADC based loop for coarse tuning (P control).
 Reference changer compensates the VOUT error that comes from the P control.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[Y.-J. Lee, ISSCC, 2016]
[Y.-J. Lee, JSSC, 2017]
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Example: DLDO with PI Control

 Continuous-time ADC: 7-bit thermometer-coded.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[D. Kim, ISSCC, 2016]
[D. Kim, JSSC, 2017]
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Example: DLDO with PID Control

 Asynchronous slope detection (D).
 Synchronous PI control.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[S. J. Kim, SSC-L, 2018]

42 of 78



Control Loops: Analog, Digital, Hybrid

 Using a high pass analog path to assist the slow digital loop.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[M. Huang, ISSCC 2017]
[M. Huang, JSSC 2018]
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Analog-Assisted (AA) NMOS Digital LDO

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[X. Ma, ISSCC 2018]

 A. NMOS intrinsic response (P)
 1. NAND-based AA path (D)   
 2. Digital control loop (I)
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Example: Analog-Digital Hybrid LDO

 Small-signal analog.
 Large-signal digital.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[S. B. Nasir, ESSCIRC, 2016]
[S. B. Nasir, JSSC, 2018]
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Example Summary of LDO Control Techniques

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

Category Publications Techniques
Analog P Ho, JSSC 2010 Small-gain stages
Analog PI Lu, TCAS-I 2015 Dual-loop with fast FVF
Analog PID Milliken, TCAS-I 2007 Differentiator
Digital I Okuma, CICC 2010 Shift-register based
Digital PI Lee, ISSCC 2016

Kim, ISSCC 2016
Flash ADC with reference changer
Multi-bit ADC and digital PI

Digital PID Kim, SSC-L 2018 Slope detector
Digital I + Analog P  Nasir JSSC 2018

Huang, CICC 2019
Small-signal analog
Fast and adaptive analog

Digital I + Analog D  Huang, ISSCC 2017 Analog-assisted (AA) digital
Digital I + Analog PD Ma, ISSCC 2018 NAND-based AA NMOS LDO
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Bode Plots of PID Control for Buck Converter
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 The LC filter in continuous-
conduction mode (CCM) has 
a pair of complex poles.

 Current-mode control uses 
the inductor current 
information, complex pole 
pair turns into two separated 
real poles, one related to RL.

 Discontinuous-conduction 
mode (DCM) operation only 
has a small inductor, of 
which the dynamics occur at 
HF, above or just below FSW.
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Loop Compensation for Buck Converter

 Type-I: I Control
 Simple, slow. 
 Need large compensation cap.
 Unity-gain freq. (UGF) limited to ~10x < FRES,LC.

 Type-II: PI Control
 1 zero compensates 1 pole.
 Used for current mode or DCM.
 Not for voltage mode CCM.

 Type-III: PID Control
 2 zeros compensate complex pole pair.
 For voltage mode, extend the UGF > FRES,LC.
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Hysteretic Control (Bang-Bang Control)
 Replace the compensator and PWM generator 

with simply a hysteresis comparator. React 
immediately when VOUT < VREF−Δ, or > VREF+Δ.

 Pros:
 Extremely simple, and extremely fast.
 Low quiescent current.

 Cons:
 FSW varies with VIN and IOUT, EMI issue.

 Solutions:
 Adaptive hysteresis window tuning.
 Constant on-time control, D=TON/T=VOUT/VIN.
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Root-Mean-Square (RMS) Current

 Sinusoidal current
 IRMS,S = IAVG x 1.11 

 Triangular current
 IRMS,T = IAVG x 1.155

 Duty-cycled (D) current
 IRMS,D = IAVG / D1/2

 Conduction loss = IRMS
2R

 1.112 = 1.232 (Sinusoidal)
 1.1552 = 1.334 (Triangular)
 1.4142 = 2 (Pulse D=0.5)
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Charge Redistribution with a Resonant Inductor
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Charge Redistribution with a Resonant Inductor

 No hard charging and no loss in the ideal resonant case.
 Soft charging.
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Resonant SC (ReSC) Converter

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

 2:1 SC Converter
 Hard charging

 2:1 Resonant SC Converters
 Soft charging
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Output Impedance of a Resonant SC Converter

 ReSC converter achieves the same ROUT as SC converter at much lower FSW.
 Resonant operation allows CRES to have much larger ΔV, compared to CF in SC.
 But, the maximum output capability is limited by LRES.
Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[K. Kesarwani, ISSCC, 2014]
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Ripple Effect

 Any voltage higher than VOUT,MIN is wasted.
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Multiphase-Interleaving DC-DC Converters
 Reduce output voltage and input current ripples.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

x One L for each phase
− Efficiency (ideally 100%, but need high Q)
− LC second-order filter (Complex 

compensator)

 Fully-on-chip, multi-phase
x Efficiency (like linear regulator)
 First-order power stage (Potential for 

fast control loop)
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Extending the Loop Bandwidth Beyond FSW

 The control loop bandwidth can be extended beyond FSW with multi-interleaving 
phase operation.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[Y. Lu, ISSCC, 2015]
[Y. Lu, JSSC, 2017]
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Non-Ideal Effects of the Fully-Integrated SC

 Parasitic loss
 Parasitic capacitor of the on-chip capacitors is about 5% of the main capacitor.
 High density capacitor helps.
 Topology dependent.
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Parasitic Insensitive Topology

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

CAP Sum
Ф1

Sum 
Ф2

Voltage
Swing

Sub 
Ф1

Sub 
Ф2

Voltage
Swing

Cp1(+) VIN 1/3VIN 2/3VIN 1/3VIN 2/3VIN 1/3VIN

Cp1(-) 2/3VIN GND 2/3VIN GND 1/3VIN 1/3VIN

Cp2(+) 2/3VIN 1/3VIN 1/3VIN VIN 2/3VIN 1/3VIN

Cp2(-) 1/3VIN GND 1/3VIN 1/3VIN GND 1/3VIN

[J. Jiang, ISSCC, 2015]
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Parasitic Insensitive Topology

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[J. Jiang, ISSCC, 2015]
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Subtraction-Mode SC

 Modified series-parallel topology.

 Subtraction-mode SC converters 
with parasitic loss reduction.

 Different capacitor voltages on each 
CFLY.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[J. Jiang, TPEL, 2020]
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Parasitic Reduction Techniques (1/3)

 Use a large resistor R1 to bias the N-well, making the N-well “floating”.
 Then, parasitic cap is dominated by CW (<<CC).

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[H.-P. Le, ISSCC 2013]
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Parasitic Reduction Techniques (2/3)

 CW: Reduced by on-chip voltage doubler.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[J. Jiang, ISSCC, 2015]
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Efficiency Improvements with Reverse Bias Voltage

 >3% efficiency improvement for 
reverse bias voltage changes 
from 2.5V to 5V.

 Another >3% improvement for 
voltage changes from 5V to 6.6V.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[J. Jiang, ISSCC, 2015]
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Parasitic Reduction Techniques (3/3)

 Recycle parasitic charge between multiple phases.

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

[N. Butzen, JSSC 2017]
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Fully-Integrated SC Converter Considerations

 For efficiency
 More VCR means high efficiencies across a wide input/output range.
 Choose parasitic-insensitive conversion topologies.
 Use parasitic reduction circuit techniques.

 For output accuracy and efficiency
 Pulse-frequency modulation (PFM)
 Adaptive switch size for optimum efficiency and smaller ripple.
 Tuning the gate-drive voltage of the switches
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Multi-Level Hybrid DC-DC Converter

 Buck Converter

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

 Buck with Stacked Switches
 Use low-voltage devices for 

less switching losses

 3-Level Buck
 Smaller voltage swing on VX

 Smaller ΔIL
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Integrated Inductors

 On-chip magnetic inductor
 1.5nH, Q≈3.8 @100MHz
[H. K. Krishnamurthy, ISSCC 2017]

Yan Lu Fundamentals of Fully-Integrated Voltage Regulators

 In-package air-core inductor
 2.5nH, Q≈7.8 @70MHz
[C. Schaef, ISSCC 2019]

 On-chip coupled LC resonator
 7.7nH @47.5MHz
[P. H. McLaughlin, ISSCC 2020]
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Distributed FIVR

 Reducing the IR drop across a large area chip (>1mm).
 Improving the droop during transient response.
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Distributed FIVR Examples

 Global + Distributed local
 Switching linear regulator
[M. E. Perez, CICC, 2019]
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 Neighboring cooperation
 Analog-assisted DLDO
[Y. Lu, ISSCC, 2018]

 Each works independently
 Synthesizable DLDO
[S. Bang, ISSCC, 2020]



Outline

 Introduction
 Basic Power Stage Selections

 Linear Low-Dropout (LDO) Regulator
 Switched-Capacitor Converter
 Switched-Inductor Converter

 Control Loop Designs
 PID Control
 Hysteretic Control

 Advanced Topologies and Techniques
 Resonant Switched-Capacitor Operation
 Multiple Interleaving Phase 
 Switched-Capacitor-Inductor Hybrid Topologies
 Distributed Integrated Voltage Regulators

 Summary
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Power Stage Characteristics Summary
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LDO Regulator Capacitive DC-DC Inductive DC-DC

Power transistor in linear 
region, acts as a tunable 
resistor, low efficiency.

No energy storage 
components (C or L), tiny.

SC network acts as a tunable 
resistor, low efficiency. 

Discrete VCR.
Efficiency can be improved 
by having a proper VCR.

Continuous VCR. 
Efficiency heavily depends 

on the inductor Q. 
Inductor has intrinsically 

larger DCR than a capacitor.
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Summary

 For power stage selection between LDO, SC, and Buck converters, and their 
control strategies.
 LDO and SC converter have a single pole power stage.
 Buck converter in CCM has a complex pole-pair, needs two zeros (PID, Type-III) 

to cancel out the pole-pair, extending the bandwidth beyond the LC FRES.
 Buck converter in DCM, or with current-mode control, can ignore the pole 

associated with the power inductor, being like a single pole power stage.
 Hysteretic control is extremely fast, but has a varying FSW.
 Multiple-interleaving-phase power stage helps to extend the loop bandwidth.

 For full integration:
 LDO is fast, tiny, and hot. 
 SC converter is friendly to process scaling, suffers from parasitic losses.
 Inductor-based DC-DC needs a good inductor (a luxury for FIVR).
 Switched-capacitor-inductor hybrid topologies alleviate the burden on inductor.
 System-in-package solutions provide high Q passives.
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Knowledge Required for PMIC

 Analog IC
 Digital IC
 Power Electronics
 Power Device
 Magnetics/Electromagnetics
 Control theory

 A multi-disciplinary area.
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Papers to See This Year

 Session 17 “DC-DC Converters” Relevant Papers:

 17.1 A Two-Stage Cascaded Hybrid Switched Capacitor DC-DC Converter With 
96.9% Peak Efficiency Tolerating 0.6V/μs Input Slew Rate during Startup

 17.3 A 1.25GHz Fully Integrated DC-DC Converter Using Electromagnetically 
Coupled Class-D LC Oscillators

 17.4 Peak-Current-Controlled Ganged Integrated High-Frequency Buck Voltage 
Regulators in 22nm CMOS for Robust Cross-Tile Current Sharing

 17.5 A 98.2%-Efficiency Reciprocal Direct Charge Recycling Inductor-First DC-
DC Converter
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THANK YOU FOR YOUR ATTENTION.

Questions?
Live Q&A Session: 

Feb. 13, 2021, 8:00-8:20 am, PST

Email: yanlu@um.edu.mo
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