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Conventional Architecture
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Integrated Low-Dropout (LDO) Voltage Regulators
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Analog LDO
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 Analog circuit-based feedback

Vg: gate voltage
Vin: input voltage
Vout: output voltage
Vref: reference voltage
Rload: load resistance
Cout: output capacitance 

Iload: load current
Ipwr: power-FET current
Iq: quiescent current 
Icap: capacitor current
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Digital LDO

 Digital control, sandwiched by ADC and DAC 
 ADC: analog to digital converter, DAC: 

digital to analog converter

Mingoo Seok 8 of 79Basics of Digital Low-Dropout (LDO) Integrated Voltage Regulator

Vin

Vout

A

Vin

C
ontrol

Vref

Vout

ADC

DAC = power-FET

Vg

ADC control

 Analog circuit-based feedback

Vref

Rload

Vg[n-1:0]

RloadCout Cout



© 2020 IEEE 
International Solid-State Circuits Conference

Analog vs Digital LDOs

Analog LDO
 Pros

 High bandwidth for fast transient 
response

 High power supply rejection ratio 
(PSRR)

 Small output ripple

 Cons
 Complex/bulky analog design
 Limited scalability to low voltage 
 Loop gain depends on operating 

voltage
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Digital LDO
 Pros

 No major analog components and 
synthesizable control 

 Scales well for low-voltage operation
 Decouples loop gain from operating 

voltage

 Cons
 Low bandwidth
 Low PSRR
 Large output ripple
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Input Voltage

 Limited Vin scalability
 Typically, Vin > 0.6-0.7V  
 A high-speed OP amplifier
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 Better Vin scalability
 0.5V or less 
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Power-FET’s Source-Gate Voltage (Vsg)

 Vsg=Vin-Vg between Vin-Vth and 0V
 i.e., Vg is analog voltage
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 Vsg=Vin-Vg: either 0V or Vin

 i.e., Vg is digital voltage 
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Output Voltage
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 Vout = Vin–0.2V to ~0V
 Power FET is typically in saturation
 If a load needs Vin-0.1V, we supply Vin

 Vout = Vin–0.05V to ~0V
 Power FET is in linear to saturation
 Wider output voltage range
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DLDO

Core Core Core

ALDO

Dropout Voltage Requirement

 Vin set to the highest VDD requirement
 An LDO can be bypassed 
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Key Specifications
 Silicon area
 Input, reference, and output voltage (Vin, Vref, Vout)
 Edge time (tedge)
 Voltage droop and overshoot (Vdroop, Vovershoot)
 Response and settling time (tresponse, tsettle)
 Load, quiescent, power-FET, and capacitor current (Iload, Iq, Ipwr, Icap)
 Peak current and power efficiency (CEpeak, PEpeak)
 Dropout voltage (Vdropout)
 Power supply rejection ratio (PSRR)
 Load regulation performance FoMs: ps FoM and pF FoM
 Maximum and minimum load current (Iload,max, Iload,min)
 DAC and ADC number of bits (NDAC,NADC)
 Dead-zone voltage (Vdz)
 DAC step size (VDAC,ss)
 IR drop voltage (VIR)
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Silicon Area

 Active components scale better than passive with technology scaling
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Voltage Droop (Vdroop)

 Vout’s maximum downward
deviation from Vref

 Vdroop is typically targeted 
to less than 10% of Vout

 ΔIload,max can be different 
from Iload,max
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Edge Time (tedge)

 tedge is a function of the 
clock period of a load

 1 GHz core  1-ns tedge

 2 GHz core  0.5-ns tedge
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Response Time (tresponse) 

 It is roughly proportional 
to feedback latency

 In synchronous control, 
it is proportional to tclk

 In asynchronous control, 
it is proportional to 
circuit latency/delay
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Settling Time (tsettle)
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 Time to take for Vout to 
settle within less than a 
small % of Vref (e.g., +/-
0.5%)       

 The output can have a 
ripple 

ΔIload,max
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Voltage Overshoot (Vovershoot)
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 Vout’s maximum upward
deviation from Vref

 Vovershoot is typically 
targeted to less than 
10% of Vout

 ΔIload,max is different 
from Iload,max

ΔIload,max
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Current and Power Efficiency (CE, PE)
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Vout

ADC
𝑃𝑃𝑃𝑃 =

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 � 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑉𝑉𝑖𝑖𝑖𝑖 � (𝐼𝐼𝑞𝑞 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

≈
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶 =
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐼𝐼𝑞𝑞 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

If: Iq << Iload

Iq
Ipwr

fs

Quiescent current

Rload

Load current; 
Equal to Ipwr in the steady state

Total currentVg

Cout

Power FET current

IloadIcap

Capacitor current
~0 in the steady state
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Current Efficiency vs. Peak Current Efficiency

 99.9% CEpeak  1% or less loss for Iload = 0.1∙Iload,max to Iload,max

 99.999% CEpeak  1% or less loss for Iload = 0.001∙Iload,max to Iload,max
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𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑞𝑞 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚
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Dropout Voltage (Vdropout)
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𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 � 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑉𝑉𝑖𝑖𝑖𝑖 � (𝐼𝐼𝑞𝑞 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

≈
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑖𝑖𝑖𝑖

=
𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑉𝑉𝑖𝑖𝑖𝑖
= 1 −

𝑽𝑽𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝑽𝑽𝒊𝒊𝒊𝒊
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𝐶𝐶𝐶𝐶 =
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐼𝐼𝑞𝑞 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙Vg

RloadCout
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Power Supply Rejection Ratio (PSRR)
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 20 � log
∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
∆𝑉𝑉𝑖𝑖𝑖𝑖

[𝑑𝑑𝑑𝑑]
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ps Figure of Merit (ps-FoM)

 Dynamic load regulation performance
 This FoM aims to capture the product of the LDO response time and current 

efficiency
 Smaller is better
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𝑝𝑝𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 � �𝐼𝐼𝑞𝑞 =
𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡 � ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
∆𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑚𝑚

�
𝐼𝐼𝑞𝑞

∆𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑚𝑚

Pseudo current 
efficiency

[Hazucha-JSSC05]

Pseudo 
response time
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Caveats for the ps-FoM

 Vin, tedge, and ΔIload,max have a 
strong impact on FoM. 

 ps FoM favors large ΔIload,max
(∵ 𝑝𝑝𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 ∝ Δ𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜/Δ𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚

2 )
 Using a large output capacitor and 

proportionally increasing ΔIload,max
improves ps FoM in a same design

 Note ΔIload,max, not Iload,max

 Ideal to compare designs having 
similar Vin, tedge, and ΔIload,max
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pF Figure of Merit (pF-FoM)

 Alternative FoM for dynamic load regulation performance 
 How small the voltage droop is at the power (Iq) and area cost (Cout)
 Smaller is better
 pF FoM works better to compare LDOs with different ΔIload,max

 Should use it for designs having similar Vin and tedge
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[Kim-JSSC17]

𝑝𝑝𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐼𝐼𝑞𝑞
∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

∆𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑚𝑚
� 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

Normalized 
voltage droop
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Maximum Load Current (Iload,max)

Mingoo Seok 29 of 79Basics of Digital Low-Dropout (LDO) Integrated Voltage Regulator

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝑢𝑢
If power FETs are 
sized in the power of 2

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑚𝑚
= �

𝑖𝑖=0

𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷−1

2𝑖𝑖 � 𝐼𝐼𝑢𝑢



© 2020 IEEE 
International Solid-State Circuits Conference

DAC Number of Bits (NDAC)
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑚𝑚
= �

𝑖𝑖=0

𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷−1

2𝑖𝑖 � 𝐼𝐼𝑢𝑢

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝑢𝑢
If power FETs are 
sized in the power of 2

𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 = log2(
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑢𝑢
+ 1)𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑚𝑚

= 𝐼𝐼𝑢𝑢� (2𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 − 1)
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DAC Step Size (VDAC,SS)
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Minimum Load Current (Iload,min)
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Minimum Load Current (Iload,min)
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for r=0.01
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Clock Frequency (fclk)

 Clock for a synchronous ADC and a controller
 High clock frequency (fclk) improves tresponse, tsettle, Vdroop, and Vovershoot

 High fclk increases Iq, thus degrading CE
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Output Ripple Size (Vripple)

 High fclk increases Vripple

 Because a controller makes a correction before the previous correction is 
fully applied on a load [Nasir-TPE16]
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Vripple ≅ α ∙ Iu ∙ Rload , , where α = 1 for fclk ≪
I𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑚𝑚𝑚𝑚𝑚𝑚
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Output Ripple Size (Vripple)

 Vripple is also a function of 
 temperature & 
 Iload

 Worst-case Vripple

@ Iload,min and high temperature
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IR Drop (VIR)

 Parasitic resistance (Rpara) can make Vout ≠ Vout,far

 The ADC senses Vout, not Vout,far

 This deviation, VIR, grows with Iload
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Outline

 Motivation

 Digital vs. Analog LDOs
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 State-of-the-Art Digital LDO Architectures
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Baseline Digital LDO Architecture 

Mingoo Seok 40 of 79Basics of Digital Low-Dropout (LDO) Integrated Voltage Regulator

Ctrl
Vref

Vout

Vg[n-1:0]

clk

NADC=1
Integral feedback
control

Time-driven, ~1 MHz

Output capacitor
(100 nF)

All digital control (0V or Vin)

[Okuma-CICC10]

Vdropout=50mV or larger

Uniformly-sized 256 PFETs 
(NDAC=8)

Vin

Cout

clk

Rload

Iload,max=200µA

ADC



© 2020 IEEE 
International Solid-State Circuits Conference

Overview 
Triggering 

1. Time-driven 
(synchronous)

2. Adaptive 
sampling clock

3. Event-driven 
(asynchronous)

4. Self-triggered

5. Domino 
triggering

Control Law

1. Integral (I) 
feedback

2. Multi-bit ADC

3. Proportional 
and integral 
(PI)

4. Feedforward

5. Binary search

Power FET

1. Digital PFET

2. Digital NFET

Digital/Analog 

1. All-digital

2. Parallel PI

3. Analog-assisted 
digital

4. Hybrid digital 
and analog

Baseline
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Integral Control

 i[k] = integration result
 err[k] = +1 or -1
 KI = integral gain
 KI = 1 for small VDAC,SS

 Worst-case tsettle = �1 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 � 2𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷
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𝑉𝑉𝑔𝑔 𝑘𝑘 = 𝑖𝑖 𝑘𝑘
𝑖𝑖[𝑘𝑘] = 𝑖𝑖 𝑘𝑘 − 1 + 𝑒𝑒𝑒𝑒𝑒𝑒[𝑘𝑘] � 𝐾𝐾𝐼𝐼

Time
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Vout
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Multi-bit ADC

 For high-performance control
 Vref is between Vref1 and Vref2

 Non-uniform quantization is common
 More silicon, power, and references
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𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = log2 𝑁𝑁𝑁𝑁. 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1

Vref1

Vref0

Vref2

Vref3

NADC= log2 4 + 1 = 2.32 𝑏𝑏𝑏𝑏𝑏𝑏

Vref

NADC= log2 1 + 1 = 2 𝑏𝑏𝑏𝑏𝑏𝑏

 Most common 

ADC number of bits:

[Kim-JSSC17]

Target level



© 2020 IEEE 
International Solid-State Circuits Conference

Multi-bit ADC with Deadzone

 Deadzone (VDZ): a voltage range where a controller doesn’t update its output
 No ripple if 0.5∙VDAC,SS < 0.5∙VDZ (VDAC,SS: DAC step size)
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Multi-bit ADC-based Integral Control
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Proportional-Integral (PI) Control

 p[k] = instantaneous error-gain product (aka proportional control output)
 KP set > 1 since it does not affect the DC error (i.e., err[k]=0  p[k]=0)
 Increasing KP: 

 Vdroop and tresponse improvement 
 Stability degradation
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝑉𝑉𝑔𝑔 𝑘𝑘 = 𝑖𝑖 𝑘𝑘 + 𝑝𝑝 𝑘𝑘

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝑖𝑖 𝑘𝑘 = 𝑖𝑖 𝑘𝑘 − 1 + 𝐾𝐾𝐼𝐼 � 𝑒𝑒𝑒𝑒𝑒𝑒[𝑘𝑘]

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝑝𝑝 𝑘𝑘 = 𝐾𝐾𝑃𝑃 � 𝑒𝑒𝑒𝑒𝑒𝑒[𝑘𝑘]

[Kim-JSSC17]
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Feedforward Control (aka Initialization)

 Predict the needed amount of additional current (Icap) by measuring Vout slope
 ff[k] = the output term of feedforward control 
 LUT = look-up table, to avoid multiplication and division 
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𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶 �
Δ𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
Δ𝑡𝑡

𝑉𝑉𝑔𝑔 𝑘𝑘 = 𝑖𝑖 𝑘𝑘 + 𝑓𝑓𝑓𝑓[𝑘𝑘]

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝐿𝐿𝐿𝐿𝐿𝐿
Δ𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
Δ𝑡𝑡

[Kim-VLSI18]
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Binary-Search Control

 Perform binary search

 Proportional-derivative (PD) 
control is proposed to 
mitigate Vout spikes during 
search 

 tsettle = ~ NDAC∙tclk

 tclk: clock period 
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[Salem-JSSC18]
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Overview 
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Synchronous, aka Time-Driven (TD)

 The worst-case response time (tresponse) is ~2 clock cycle
 One cycle to wait for the next sampling edge
 One cycle to calculate and update Vg

 Fs = 1 MHz  tresponse = 2 µs
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Adaptive LDO Sampling Clock

 Adaptively change fclk based on the present Iload level
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Adaptively change fclk based on 
the number of power FETs that 

are turned on

[Nasir-TPE16]

Vripple ≅ α ∙ Iu ∙ Rload , , where α = 1 for fclk ≪
I𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑚𝑚𝑚𝑚𝑚𝑚

Vout ∙ Cout
 

𝑖𝑖𝑖𝑖 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
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Asynchronous (a.k.a. Event-Driven)
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[Kim-JSSC’17]
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Asynchronous Comparator 

 Operating at low supply voltage 
 Superior latency over synchronous (i.e., clocked) comparator 
 Typically worse in the sampling rate and energy consumption per sampling 
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REF
OUT

IN

VDD

VDD
VDD

VX
VXVB

VB
M9 M10

M8M7

M11

M12

M13

M21

M20

M14 M16 M18 M22

M15 M17 M19 M23

First Stage Second Stage

[Kim-ISLPED17]

Vin
Vref

Vout

Rload



© 2020 IEEE 
International Solid-State Circuits Conference

Integral Control in Event-Driven Triggering

 Integration with non-uniform triggering requires time interval measurement
 Also, it requires a hardware multiplier 
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𝑉𝑉𝑔𝑔 𝑘𝑘 = 𝑖𝑖 𝑘𝑘
𝑖𝑖 𝑘𝑘 = 𝑖𝑖 𝑘𝑘 − 1 + 𝐾𝐾𝐼𝐼 � 𝑒𝑒𝑒𝑒𝑒𝑒[𝑘𝑘 − 1] � (𝑡𝑡 𝑘𝑘 − 𝑡𝑡 𝑘𝑘 − 1 )

Time interval 
between two 

events

Vref-Vout[k-1]

Need a 
hardware 
multiplier

[Kim-JSSC17]

time

err

err[k]

err[k-1]

1

2

3

0
t[k]t[k-1]
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Challenges in Event-Driven Trigger
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VSP

VOUT

Non-equidistant 
time interval  

PULSE

VSP Sticking 

VOUT Long TS  

PULSE

slower

 Need to measure the time interval between two events 
 Need to have a multiplier
 As Vout gets closer to Vref, the event generation becomes slower
 Called a sticking problem. Bad for tsettle

[Kim-VLSI18]
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Self-Trigger

 Time measurement and multiplication are not needed
 No sticking problem  Improving tsettle
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Time

Vout

1

trig

Vref[0]
Vref[1]

2 10

Vref[2]

0

Async enable 
self-triggeren

Sync disable 
self-trigger

err

[Kim-VLSI18]
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Domino Trigger

 A comparator output change triggers the next comparator
 Improve tresponse and Vdroop [Kim-VLSI19]

Vref[3]
Vref[2]
Vref[1]
Vref[0]

Vout

LV[2]
LV[1]
LV[0]

Deadzone (VDZ)Vref[2]

Vref[3] Ring oscillator

Vref[4]

Vref[1]

Vref[0]

LV[3]

LV[2]

LV[1]

LVB[1]

LV[0]

LVB[0]

LV[4]

LVB[4]

VOUT

Ring oscillator

CMP[3]

CMP[2]

CMP[4]

CMP[1]

CMP[0]

CT

CT
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Overview 
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Digital PFET 
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𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∝ (𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡) ⋅ (𝑉𝑉𝑖𝑖𝑖𝑖-𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜) 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∝ (𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡)𝛼𝛼

Poor PSRR
Small Vdropout

Poor PSRR
Large Vdropout

Linear region Saturation region

Vref

Vout

Vg[n-1:0]
Vin

Digital value
Each bit: 0V or Vin

Cout Rload

ctrlADC
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Digital NFET 
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𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∝ (𝑉𝑉𝑔𝑔,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑡𝑡𝑡) ⋅ (𝑉𝑉𝑖𝑖𝑖𝑖-𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜) 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∝ (𝑉𝑉𝑔𝑔,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑡𝑡𝑡)𝛼𝛼

Poor PSRR
Small Vdropout

No Vin: Good PSRR
Large Vdropout

Linear region Saturation region

Vref

Vout

Vg,boosted
Vin

Digital value
Each bit: 0 or Vin

CP

Vg

Digital value 
Each bit: Vout or Vout+Vth

Charge pump / 
level shifter

Cout Rload

ctrlADC
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Overview 
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Parallel Proportional and Integral 

 The output of P control is applied w/o waiting for I control
 Improve Vdroop and tresponse
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[Kim-ISSCC17]

PVref

Vout

p[k]
Vin

p[k]+i[k] is 
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current domain

Cout Rload

I
i[k]

Vin

ADC
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Analog-Assisted Digital

 Digital and analog loop
 Sharing the same power FETs
 Vout droops  VSSB droops  VG

droops  power-FETs are more 
strongly turned on

 Performance depends on the gm 
of power-FETs

 Weaker performance for low-to-
high Iload transition
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[Huang-JSSC18]

Iload

Vg

Vref

Cout

Vout
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Hybrid Digital and Analog

 Two sets of power-FETs 
 Coordination between two loops is needed
 Example: i) recovery from a large droop: use digital loop; ii) fine-grained 

output control & steady state: use analog loop
Mingoo Seok 65 of 79Basics of Digital Low-Dropout (LDO) Integrated Voltage Regulator

[Liu-ISSCC19]
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Vin
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Ipwr=i[k]•Iu

Rload

IloadIcap

State Space Representation: Error State 
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𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘]Error state:

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘 + 1] = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] + 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐[𝑘𝑘] � 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � (1 − 𝑒𝑒 ⁄−𝑇𝑇𝑠𝑠 (𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜))

Let’s define it as A

Output voltage:

∴ 𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 + 1 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘 + 1
= 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘 − 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 � 𝐴𝐴
= 𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 − (𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘 − 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 ) � 𝐴𝐴

Time 
interval 
b/w two 
samples, 
i.e., 1/fclk

[Kim-JSSC17]
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Vin

Cout

Vout
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Rload
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State Space Representation: Error State 
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𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘]Error state:

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘 + 1] = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘] + 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐[𝑘𝑘] � 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � (1 − 𝑒𝑒 ⁄−𝑇𝑇𝑠𝑠 (𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜))

Let’s define it as A

Output voltage:

∴ 𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 + 1 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘 + 1
= 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘 − 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 � 𝐴𝐴
= 𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 − (𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘 − 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 ) � 𝐴𝐴

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝[𝑘𝑘] = 𝑖𝑖[𝑘𝑘] � 𝐼𝐼𝑢𝑢

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 =
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

=
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Power FET current:

Load current:

∴ 𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 + 1 = 𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 − 𝑖𝑖 𝑘𝑘 � 𝐼𝐼𝑢𝑢 −
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� 𝐴𝐴

= 1 −
1

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒[𝑘𝑘] − 𝐼𝐼𝑢𝑢 � 𝐴𝐴 𝑖𝑖[𝑘𝑘] +

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 𝐴𝐴

Time 
interval 
b/w two 
samples, 
i.e., 1/fclk

[Kim-JSSC17]
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Vin

Cout

Vout
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Ipwr=i[k]•Iu

Rload

IloadIcap

State Space Representation: Integral Control State
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𝑖𝑖[𝑘𝑘 + 1] = 𝑖𝑖[𝑘𝑘] + 𝐾𝐾𝑖𝑖 � 𝑒𝑒𝑒𝑒𝑒𝑒[𝑘𝑘]

𝑒𝑒𝑟𝑟𝑟𝑟[𝑘𝑘 + 1]
𝑖𝑖[𝑘𝑘 + 1] = 1 −

1
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 𝐴𝐴 −𝐼𝐼𝑢𝑢 � 𝐴𝐴

𝐾𝐾𝑖𝑖 1

𝑒𝑒𝑟𝑟𝑟𝑟[𝑘𝑘]
𝑖𝑖[𝑘𝑘] +

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 𝐴𝐴

0

𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 + 1 = 1 −
1

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒[𝑘𝑘] − 𝐼𝐼𝑢𝑢 � 𝐴𝐴 𝑖𝑖[𝑘𝑘] +

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 𝐴𝐴Error state equation:

Integral control state 
equation:

[Kim-JSSC17]
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Vin

Cout

Vout

LDO
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𝑒𝑒𝑟𝑟𝑟𝑟[𝑘𝑘]
𝑖𝑖[𝑘𝑘] +

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
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� 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒[𝑘𝑘] − 𝐼𝐼𝑢𝑢 � 𝐴𝐴 𝑖𝑖[𝑘𝑘] +

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 𝐴𝐴Error state equation:

Integral control state 
equation:

Stable if |eigenvalue| < 1

[Kim-JSSC17]



-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y 
P

ar
t

State Space Representation: Results

Decreasing fclk

Parameters:
Vin=500mV,
Vref=450mV,
Rload=450Ω,
Iu=25uA,
Cout=100pF,
fclk=1MHz~100MHz,
KI=1
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Papers to See This Year

Session 25 Relevant Papers:
 25.1: A Fully Synthesizable Distributed and Scalable All-Digital LDO in 10nm 

CMOS
 25.2: A 480mA Output-Capacitor-Free Synthesizable Digital LDO Using CMP-

Triggered Oscillator and Droop Detector with 99.99% Current Efficiency, 
1.3ns Response Time and 9.8A/mm2 Current Density 

 25.3: A 65nm Edge-Chasing Quantizer-Based Digital LDO Featuring 4.58ps-
FoM and Side-Channel-Attack Resistance

Session 32 Relevant Papers:
 32.4: A 0.4-to-1.2V 0.0057mm2 55fs-Transient-FoM Ring-Amplifier-Based 

Low-Dropout Regulator with Replica-Based PSR Enhancement
 32.5: A Scalable and PCB-Friendly Daisy-Chain Approach to Parallelize LDO 

Regulators with 2.613% Current-Sharing Accuracy Using Dynamic Element 
Matching for Integrated Current Sensing
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