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Conventional Architecture

SoC
- )
- \ Core
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r ! v ok Core
Buck H—¢ i
) I-/mm\-l ’ +>| Core
N Core 1
\_ ),

O Hard to integrate a buck on a chip
[0 Cores share a single voltage
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Integrated Low-Dropout (LDO) Voltage Regulators

SoC SoC
4 - w\ / VDD, \
r w Core . w Core
Battery * / Battery ) -
\ J r 1 \ / VDD2 r 1
T o b Core v ! -—)m—> Core
Buck |u=YpP ) . Buck = VDD. ( \
) I-/mm\-l ’ +>| Core LW'I 3| Core
( ) VDD4 ( )
->| Core W Core
\_ J K /
[0 Hard to integrate a buck on a chip O LDO easy to integrate; no large passives
[0 Cores share a single voltage [0 LDO can enable per-core voltage domain

Mingoo Seok Basics of Digital Low-Dropout (LDO) Integrated Voltage Regulator 5 of 79

© 2020 IEEE
International Solid-State Circuits Conference



Outline

[0 Motivation

Digital vs. Analog LDOs

0 Key Specifications

0 Interim Q/A

[0 State-of-the-Art Digital LDO Architectures
[0 Stability Analysis

0 Concluding Remarks

Mingoo Seok Basics of Digital Low-Dropout (LDO) Integrated Voltage Regulator 6 of 79

© 2020 IEEE
International Solid-State Circuits Conference



Analog LDO

V,: gate voltage

V,.: input voltage

V., output voltage
V. reference voltage
Ri.aq: l0ad resistance
C,.t: output capacitance

I,.4: load current

I, power-FET current
I,: quiescent current
I..pt capacitor current

O Analog circuit-based feedback
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Digital LDO

RIoad

O Analog circuit-based feedback

DAC = power-FET

ADC control AV ~N
A R I in
' N~ N [I ]
O :l
9 al
Vref g : ‘e
ADC — . d
\_ JVg[n—l:O]l
B ¢ #Vout
Cout== Rioad

O Digital control, sandwiched by ADC and DAC

0 ADC: analog to digital converter, DAC:
digital to analog converter
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Analog vs Digital LDOs

Analog LDO Digital LDO
[0 Pros [0 Pros
B High bandwidth for fast transient B No major analog components and
response synthesizable control
B High power supply rejection ratio B Scales well for low-voltage operation
(PSRR) B Decouples loop gain from operating
® Small output ripple voltage
O Cons 0 Cons
B Complex/bulky analog design ® Low bandwidth
B Limited scalability to low voltage B Low PSRR
B Loop gain depends on operating B Large output ripple
voltage
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Input Voltage

Vin
Analog LDO Digital LDO—— I:I '—L !
0 J
Vin 8 q[ °
Vref Vg Vref g . ®e
A ADC = . qu
\ ng[n—l:O]l
1 Vout ¢ #Vout
—_— —— R
Cout Rload Cout load
O Limited V,, scalability O Better V,, scalability
O Typically, V., > 0.6-0.7V 0 0.5V orless

O A high-speed OP amplifier
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Power-FET's Source-Gate Voltage (V)

Vin
Analog LDO Digital LDO—— I:I '—L !
Q) J
Vin 8 q[ °
Vref Vg Vref g . ®e
A ADC = . qu
\ ng[n—l:O]l
1 Vout | #Vout
Cout== Rload Cout__ Rload
0O V=V,,-V, between V, -V, and 0V O V=V,-V,: either OV or V,,
O i.e., Vg is analog voltage O i.e., Vg is digital voltage
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Output Voltage

Vin
Analog LDO Digital LDO—— I:I '—L 11
0O J
v, o ——tdC . 0.05V~
Vref Vg Vref g . ®e
A IO.2V~ ADC = . d
\ ng[n—l:O]l l
1 Vout N ¢ #Vout
—_— —_—r R
Cout Rload Cout load
O Vgue = V;,—0.2V to ~0V O V.. = V;,—0.05V to ~0V
[0 Power FET is typically in saturation [0 Power FET is in linear to saturation

O 1If a load needs V,,-0.1V, we supply V,, [0 Wider output voltage range
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Dropout Voltage Requirement

V;,=0.6V V;,=0.6V
0.1V

Y TN S

| ol | [ALDO]IO.ZV i | [DLDO]I[DLDO]IO.ZV

0.6V 0.5V 0.4V 0.6V 0.5V 0.4V

Core Core Core Core Core Core
O V,, set to the highest VDD requirement [0 Less dropout voltage requirement
[0 An LDO can be bypassed 0 Support wider output voltage
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Key Specifications

Silicon area

Input, reference, and output voltage (Vi,, Viers Vout)
Edge time (t.yqge)

Voltage droop and overshoot (Vy.00pr Vovershoot)
Response and settling time (tesponse, tsettie)

Load, quiescent, power-FET, and capacitor current (1,554, Ig, Ipwrr Icap)
Peak current and power efficiency (CE . PE,cak)
Dropout voltage (V4ropout)

Power supply rejection ratio (PSRR)

Load regulation performance FoMs: ps FoM and pF FoM
Maximum and minimum load current (I,5,g maxs Lioad min)
DAC and ADC number of bits (Npac,Napc)

Dead-zone voltage (Vg,)

DAC step size (Vpacss)

IR drop voltage (Vg)

OO0O0O000000000000
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Silicon Area

65-nm example [Kim-VLSI19]

Vy[n-1:0]
ref
'dq [I Digital
controller
OUt 4.8%
Power
Ricad Output FETs
capacito
(100 pF)

0 Active components scale better than passive with technology scaling
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Voltage Droop (Vgroop)

A @ALoad,max O V,,'s maximum downward
deviation from V
IIoad
O Vyroop IS typically targeted
to less than 10% of V
O Al,.q max Can be different
Vout from IIoad,max
> Time
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Edge Time (t.4qe)

+

ﬂmmad,max 00 teye is @ function of the
clock period of a load

IIoad
O 1 GHz core 2 1-ns t 44

00 2 GHz core 2 0.5-ns t4qe

out

> Time
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Response Time (tresponse)

1 ﬂmmad,max O Itis roughly proportional
to feedback latency
IIoad
0 In synchronous control,
it is proportional to t
O In asynchronous control,
Vo, it is proportional to
ou

circuit latency/delay

> Time

tresponse
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Settling Time (t. i)

1 [ ALigad,max O Time to take for V., to
settle within less than a
Lioad small % of V. (e.g., +/-
0.5%)

[0 The output can have a
ripple

out

\
I::): tsettle '<:I
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Voltage Overshoot (V,yershoot)

A QAI|oad,max O V'S maximum upward
-------------- deviation from V ¢

IIoad

O Vovershoot IS typica”y
targeted to less than
10% of V,

O Aljyag max is different

out
from IIoad,max

overshoot

> Time
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Current and Power Efficiency (CE, PE)

uiescent current
Q Power FET current
4

~\~~~~ Vin ,,,/
™7 . I
I [ 1L CE S ==,
Vref Vg pwr \~g____l_o_ag, €--=-- TOtal Current
ADCH ctrl ]—,Lq
If -qq -q[I PE — VOUt ) IlOCld ~ Vout
> e Vin ) (Iq + Iload) ? Vin
Vout Icap Iload :
e,&ﬁ_;’ '{ :
\
. ¢"” out R|Oa \\ If.' Iq <<I Iload
Capacitor current 1 \
~(0 in the steady state ~ = Load current;

Equal to I, in the steady state
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Current Efficiency vs. Peak Current Efficiency

CE 4
CF — l150a
Iq + Iload E O/d:
CE,4ok=99} 9%
CEpear = T +loIch, —
q oad,max i ; ’ '1 ——>109(I}0aq)

10,000 1000 100 1

-

00 99.9% CEpcax - 1% or less loss for I,.g = 0.1+X 024 max tO Tioad max
0 99.999% CE,..x 2> 1% orless loss for I,,q = 0.001:1,,.4 max tO Livad max
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Dropout Voltage (Vg opout)

Vin
I |
I q I CE = I -I_lo;ld
V ef load q T lload
QADC-[ ctrI ]—Fd Ifl coe [II Vdropout Vo v

PE = out ‘loa ~ _out

V. -, +1 V.

— Vout in ( q load) in

C R _ Vin — VdTOPOUt —1— Vdropout
out load Vin Vin
= = N

The larger dropout
voltage, the lower PE
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Power Supply Rejection Ratio (PSRR)

PSRR

A
PSRR = 20- log AV

AN
]

out
in

[dB]

Active Feed baa{\

\<ca pacitor

\

output

Hz
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ps Figure of Merit (ps-FoM)

Pseudo
response time

A
'd N\

—~ Cout ’ AVout ICI
ps FoM = tresponse ) Iq = Al . (AI )
load max load max

W_/

Pseudo current
efficiency

[0 Dynamic load regulation performance
[0 This FOM aims to capture the product of the LDO response time and current

efficiency
[0 Smaller is better [Hazucha-JSSCO05]
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Caveats for the ps-FoM

* measurement

Dropout=10% e V O V.t and Al have a
3007 _nlN_le=1V’ Al p=407.7TmA h Stl.rlllonegdgielil’l pact Olr?alczl’gﬁx
2751 —A—V =05V, Al =91.8mA
250 - IN LOAD 5
225+ ) T 0 ps FoM favors large Al ;.4 max
200+ 0.5V I % ( ps FoM AVout/Allzoad,max)
> & . .
E, 1757 . 3 O Using a large output capacitor and
g 150- A\ = proportionally increasing Aly,4 max
=5 125+ A = improves ps FoM in a same design
100+ \ Al B
75- '
50 \A 0 [0 Note AIIoad,maxr not IIoad,max

0 2 4 6 81012141618 20 22 24.26 28 30 [0 Ideal to compare designs having
Toeelns]  [Kim-VLSI19] similar Vi, tegges @nd Aljg,g max
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pF Figure of Merit (pF-FoM)

AI/out )
Cout
AIload, max Vout

J
Y

Normalized
voltage droop

pF FoM =Iq(

Alternative FoM for dynamic load regulation performance

How small the voltage droop is at the power (I,) and area cost (C,,)

Smaller is better

pF FOM works better to compare LDOs with different Al .4 max

Should use it for designs having similar V;, and t.q4c [Kim-JSSC17]

OoOo00oaod
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Maximum Load Current (I;5ag max)

If power FETs are
sized in the power of 2
Npac-1 z-°~

Power FET unit current =1,

Maximum load current (I, 4 mo) = 2t -1,
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DAC Number of Bits (Npac)

If power FETs are
sized in the power of 2
Npac-1 z-°~

Power FET unit current =1,

Maximum load current (I, 4 mo) = 2t -1,
i=0

I
Iload, max — Iu' (ZNDAC _ 1) E> NDAC = 10g2 (lo_a;l’ﬂ + 1)

u
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DAC Step Size (Vpac ss)

If power FETs are
sized in the power of 2
Npac-1 z-°~

Power FET unit current =1,

Maximum load current (I, 4 mo) = 2t -1,
i=0

I
Iload, max — Iu' (ZNDAC _ 1) E> NDAC = 10g2 (ZO_CL;Z’M + 1)

u

Output voltage
resolution (worst-case) ~=> Vpac ss = lu * Rioaamax
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Minimum Load Current (1,524 min)

If power FETs are
sized in the power of 2
Npac-1 z-°~

Power FET unit current =1,

Maximum load current (I, 4 mo) = 2t -1,
i=0

I
Iload, max — Iu' (ZNDAC _ 1) E> NDAC = 10g2 (ZO_CL;Z’M + 1)

u

Output voltage r=0.01 if targeting
resolution (worst-case) == Vbpac ss = lu " Rioadmax )/DAC,55=1% of V
% V..
=, —2 -, Ty,

) u -’ -,
Iload,min 1/7« - I,
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Minimum Load Current (1,524 min)

If power FETs are
sized in the power of 2
Npac-1 z-°~

Power FET unit current =1,

Maximum load current (I, 4 mo) = 2t -1,
i=0

I
Iload, max — Iu' (ZNDAC _ 1) E> NDAC = 10g2 (ZO_CL;Z’M + 1)

u

Output voltage r=0.01 if targeting
resolution (worst-case) == Vbpac ss = lu " Rioadmax )/DAC,55=1% of V
|4 |4 el
= Iu'o—ut: Iu'%":r'vout
Iload,min /7« - I,
V V I
Ioadmin = Iy == L - == Ly

S

VDAC,SS

_ &g, Iload,min=100'Iu
for r=0.01
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Clock Frequency (f.)

V
ref ADC _CIEI_+q s -qq
q__ = 'Clk .
------- ) ¢ Vout
COUt:: RIoad

[0 Clock for a synchronous ADC and a controller
00 High clock frequency (f.) improves t.sponser tsettier Varoopr @NA Voyershoot
00 High f,, increases I, thus degrading CE
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Output Ripple Size (V,i,pie)

V
ref jAD C

The controller output
. alternates between
two codes with 1 LSB
difference

Iload min

Viipple = - I " Rjgaq, Where a = 1 for fy, <
Vout * Cout

00 High f,, increases V

[0 Because a controller makes a correction before the previous correction is
fully applied on a load [Nasir-TPE16]
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Output Ripple Size (V,i,pie)

I :
Viipple = - I, - Rjgaq, Where a = 1 for fy, < oad min
Vout * Cout
*Simulation
g5 § VOO0 Ve O Ve is also a function of
YWC B temperature &
20 \ a=1, lu=6nA, 11-bit power-FET array B Lo
% 15
= '\24(& [0 Worst-case V.
>-%1° @ I,yaq min @nd high temperature
5-
100 1,000 10,000
IIoad [nA]

Source: S.J. Kim (Columbia)
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IR Drop (Viz)

V.

L L

jADC

Ctrl —~—d|.d

}

n

....q[I

IIoad /

para Vout far

Cout

out

Iload

\ Ao &4
RIoad ;ﬂ Vout /\;k VIR

- - > Time
[0 Parasitic resistance (R,,.,) can make Vg, # Vot tar
[0 The ADC senses V,,, not V,; c;
0 This deviation, Vg, grows with I,,.4
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Baseline Digital LDO Architecture

All digital control (OV or V,,)

Integral feedback
Napc=1 control
‘/ Viropout=20mMV or larger
V,[n-1:0

Vres —('ADC—[ Ctrl]—;Lc.:I qq oo

Time-driven, ~1 MHz out 1 R
/’C Ioad Uniformly-sized 256 PFETs
(Npac=8)

Output capacitor = =
(100 nF)

IIoad,max=200|JA
[Okuma-CICC10]
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Overview

Control Law

Triggering Power FET Digital/Analog

& Integral (I)
feedback

~> |Baseline

. Parallel PI
. Multi-bit ADC . Adaptive 2. Digital NFET

sampling clock . Analog-assisted
. Proportional digital

and integral

(PI)

. Feedforward

. Event-driven
(asynchronous) . Hybrid digital
and analog

. Self-triggered

. Domino
triggering

. Binary search
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Overview

Control Law

. Integral (I)
feedback

. Multi-bit ADC

. Proportional
and integral

(PI)
. Feedforward

. Binary search

Triggering

. Time-driven

(synchronous)

. Adaptive

sampling clock

. Event-driven

(asynchronous)

. Self-triggered

. Domino

triggering

Power FET

1. Digital PFET

2. Digital NFET

Digital/Analog
1. All-digital
. Parallel PI

. Analog-assisted

digital

. Hybrid digital

and analog

Mingoo Seok
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Integral Control

A I,.aq (demanded) - Vg[k] _ i[k]
i[k] =ilk —1] + err[k] - K,

Lwr (supplied)

i[k] = integration result
err[k] = +1 or -1

K; = integral gain

K; = 1 for small Vpac ss
Worst-case ty,, = 1/ - 2Noac

O O0O000

OO XA X Xt Derror
C 26 X 27 X 28X 29 X330 X331 X332 X33 X34 X33) Vg

> Time

Mingoo Seok Basics of Digital Low-Dropout (LDO) Integrated Voltage Regulator 43 of 79

© 2020 IEEE
International Solid-State Circuits Conference



Multi-bit ADC

ADC number of bits: N ,,. = log,(No. quantization level + 1)

Target level ~  ~—=============mommmeeees Viefs
k"""”’ ~~~‘~~~ N TTTTTTTTTT T Vrefz
Vref _________________________
------------------------ Vrefl
"""""""""""" VrefO
0 Most common 0 For high-performance control
O V. is between V . and V.
0 Non-uniform quantization is common
[Kim-JSSC17] [0 More silicon, power, and references
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Multi-bit ADC with Deadzone

Vout i
Vref3 -------------------------
Vpz I VDAC,SS
Vrefz """""""""""" _I """""""""""""""""""""""""""
__1 _________ Vief
V ——————————————————————— e i e S R S R S S S R R R R M
refl 0 5'VDZ
VrefO -------------------------
>\

OO0 Deadzone (Vp7): a voltage range where a controller doesn’t update its output

0 No ripple if 0.5-V < 0.5V, (V : DAC step size)
DAC,SS DZ DAC,SS [Kim-JSSC17]
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Multi-bit ADC-based Integral Control

A I,0aq (demanded)

| \

Lwr (supplied)

OCOEEOE X X X X X X2 err
C 26 X 27 X 28X 29 X330 X331 X332 X33 X34 X33) Vg
\ J

.
Oscillation!
> Time

I,,aq (demanded)

Lwr (supplied)

Vout

Co X X2 X2 Xt Xo Ao Xo Ko ) Err

26 X27X29X31x33X34X34X34X34)Vg
shorter t__.

no oscillation

[Kim-15S81% ]
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Proportional-Integral (PI) Control

Integral Output,ilk] = ilk — 1] + K, - err[k]

Proportional Ouptut,plk]| = Kp - err[k]
Controller Output, V, k] = i[k] + plk]

O p[k] = instantaneous error-gain product (aka proportional control output)
O K, set > 1 since it does not affect the DC error (i.e., err[k]=0 > p[k]=0)

O Increasing Kg:
B Vioop @Nd tiegponse improvement

B Stability degradation [Kim-JSSC17]
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Feedforward Control (aka Initialization)

V.

N

Vet I . I A \V
"pocH ctri 44 qli---q[I out

- V > Time
Ica: out . . AVout
cap —
Cout__ RIoad At
V, [kl = i[k] + ff[k]

- _ AVO'LLt
ff[k]—LUT< N )

OO0 Predict the needed amount of additional current (I.,,) by measuring V. slope
O ff[k] = the output term of feedforward control
0 LUT = look-up table, to avoid multiplication and division [Kim-VLSI18]
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Binary-Search Control

wd isarR 0 1 I control | 0 Perform binary search

1104+ -5 = S - Y

107 7 L O Proportional-derivative (PD)

B=( 100- YT control is proposed to

011 T.~2'T_, limit cycle oscillation ) . :

YT e e ————— r———— — mitigate V, . spikes during

001 | o search

34 5 6 7 8  9ime
I control l | l l \ ’ ‘ l O foerie = ~ Npactak
| - O tgy: clock period
SAR ~0 5 5
[Salem-]SSC18]
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Overview

Control Law

Triggering Power FET Digital/Analog
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. Time-driven 1. Digital PFET 1. All-digital
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. Multi-bit ADC . Adaptive 2. Digital NFET
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Synchronous, aka Time-Driven (TD)

~y
tresponse

g
Q
©

V)]

Cdrredtion

> Time

[0 The worst-case response time (t..sponse) 1S ~2 clock cycle
B One cycle to wait for the next sampling edge
B One cycle to calculate and update V,

O Fy=1MHZ D tregponse = 2 MS
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Adaptive LDO Sampling Clock

Iload ,min

Vout ] Cout

Viipple = - I, *Rjgaq, Where a = 1 for fy, <

the number of power FETs that

if Livaa = lioad max, then fox can be large } Adaptively change f, based on
are turned on

if Lioaa = lioad min, then fo, should be small

0 Adaptively change f_, based on the present I ., level
i oo [Nasir-TPE16]
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Asynchronous (a.k.a. Event-Driven)

~ny
tresponse

Event:

:

[N AR |

Samiple|
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LR B 1 -_-I
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1

1
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1

1
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1

1

]

v
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Cdrreaqdtion

|
|
|
!
Time-driven !
|
|
|

T i <
E: e 10 Vdroop
)
. S - 1o
Event-driven my {6 |0
1915
S |
> Time _ )
[Kim-JSSC'17]
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Asynchronous Comparator

VDD
First Stage Second Stage
VDD H[M20
_ VDD
M9 | |+—IM10 ;];
VB | [ U Jf17 14 16 |18 [M22
11 T ° v 1] . wx ouT
o'ﬁ“:w vs] o
|§I/|13 m15 Ywi7 |§I/|19 M23
4 M11 5
= '|J"_"21 [Kim-ISLPED17]

[0 Operating at low supply voltage
[0 Superior latency over synchronous (i.e., clocked) comparator

0 Typically worse in the sampling rate and energy consumption per sampling
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Integral Control in Event-Driven Triggering

Need a
hardware
multiplier

err //
Y I ; Vg[k] = i|k] /
‘, ilk] =ilk —1]+ K, -err[k — 1] - (t[ | —tlk —1])
v} N MR G s ek “ VRN Y,
i g ~ ~

VierVoullk-1] Time interval
between two
events

VIS S IS VSIS ST IS SIS TSI IS SIS

tk-1]  t[k]

time

O Integration with non-uniform triggering requires time interval measurement

[0 Also, it requires a hardware multiplier
[Kim-]JSSC17]
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Challenges in Event-Driven Trigger

Vour VOUT: Long Ts ®
Sticking ®
Non-equidistant
time interval ® slower
r r S I -
PULSE PULSE

Need to measure the time interval between two events

Need to have a multiplier

As V. gets closer to V., the event generation becomes slower

Called a sticking problem. Bad for t e [Kim-VLSI18]
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Self-Trigger

Vref[o] out
Vref[l]
VFEf[Z] 1
]
]
: > Time
A i _Sync disable
trig !l /I._vl —i. ?” self-trigger
1,1 1 |
'3|=Async enable |} I:"
en self-trigger 'l‘,l
1
I

err{ 0 };(1)(2)(1)6 0 )

0 Time measurement and multiplication are not needed
O No sticking problem > Improving t. e [Kim-VLSI18]
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Domino Trigger

Vour
0

CMP[3]

Vref[3] _c\ LV [3] .
/

Vel CMP[2]  Deadzone (Vbz)

OT\ LV[2],
P ] LV[2]

Ring oscnlator

e |

+

+

Vee1] | CMP[1]\Q\ V1], E
T > Lv[0] L
Ve % VB[]
CVref[O] Y CMP[0] LV[O]
J'
LVB[O]

O A comparator output change triggers the next comparator
O Improve tesponse @aNd Viyroop [Kim-VLSI19]
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Overview
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Digital PFET

" Digital value
Each bit: OV or V,,

Linear region Saturation region
Iload X (Vin _ Vq _ Vth) ) (Vin'Vout) Iload X (Vin o Vg R Vth)a
Poor PSRR Poor PSRR
Small Vdropout Large Vdropout
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Digital NFET

P ! out “>.._Digital value

- | .~ Each bit: V_ or V. +V,,
Digital value T Cout Rioad™e
Each bit: 0 or Vin Charge pump /

= level shifter
Linear region Saturation region
Iload X (Vg,boosted o Vout o Vth) ) (Vin'Vout) Iload X (Vg,boosted o Vout _ Vth)a
Poor PSRR No V,,: Good PSRR
Small Vropout Large Varopout
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Overview
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Parallel Proportional and Integral

VII’]
pIK] I
Vref P [{'di 'd[{ e 'd[I
ADC i /IJ:k]
[ I Vout \\
Cout T Rload p[k\]+i[k] IS
1 performed in the

= current domain

[0 The output of P control is applied w/o waiting for I control

[0 Improve Vy.oop and tiegponse [Kim-ISSCC17]
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Analog-Assisted Digital

Mp Csl gm 0 Digital and analog loop
Vet > (SR | 'l% O Sharing the same power FETs

y Vg i O V., droops > Ve droops > Vg
R Ron1 droops - power-FETs are more

CLK My ON2 strongly turned on
ommmTeeseees > i I O Performance depends on the g,,

: ! Vo | |——2" “load of power-FETs

eeee Vout Re Ce | 0 Weaker performance for low-to-

C.o 1 COAD high I, .4 transition

[Huang-JSSC18]
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Hybrid Digital and Analog

Digital loop Analggdoop
r - N ' N\
Vv IVin
ref Vg Vg o Vref
"< AocH Ctrl |#dC L -+ g
Yout
Cout== RIoad

Two sets of power-FETs -

O
0 Coordination between two loops is needed
O

Example: i) recovery from a large droop: use digital loop; ii) fine-grained
output control & steady state: use analog loop [Liu-ISSCC19]
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Outline
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0 Digital vs. Analog LDOs
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[0 State-of-the-Art Digital LDO Architectures

Stability Analysis
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State Space Representation: Error State

Let’s define it as A
- A

N
Output voltage: Vi, [k + 1] = Voye[k] + Leaplk] - Ripaq - (1 — e~ Ts/(Rioad Cout))
serrlk + 1] = Vierp — Vouelk + 1]

Error state: errlk] = Vier — Vour[k]

Time
= Vref — Voutlk] — Icap [k]- A interval
= errlk] — (Lywrlk] = Lipaalk]) - A b/w two
samples,
i.e., 1/f

[Kim-JSSC17]
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State Space Representation: Error State

Let’s define it as A
Error state: errlk] = Vier — Vour[k] A

4 A\
Output voltage: Vi, [k + 1] = Voye[k] + Leaplk] - Ripaq - (1 — e~ Ts/(Rioad Cout))

serrlk + 1] = Vierp — Vouelk + 1]

Time
= Vref — Voutlk] — Icap [k]- A interval
= errlk] — (Lywrlk] = Lipaalk]) - A b/w two
samples,
Power FET current: lpwrlk] = i[k] I, .e., 1/fq
Voutlkl  Vier —errlk
Load current: Ij,qqlk] = out| ]: ref [kl
Rload Rload

(. Vyer — err[k])
~errlk + 1] =err|k] —|ilk]- I, — A

Rload

1 |4
= (1 - -A) err[k] — (I, - A)i[k] + —L - A
Rload Rload

[Kim-JSSC17]
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State Space Representation: Integral Control State

V.
Error state equation: errlk + 1] = (1 -A) err[k] — (I, - A)i[k] + el 4

Rload Rload
Integral control statei[k + 1] = i[k] + K; - err[k]
equation:
Vref
[err[k + 1]] 1= A —I,-A [err[k]] + |z A
[k +1 N load [k load
ik +1] b Lk X

[Kim-JSSC17]
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State Space Representation: Stability Condition

) . Vref
-A)err[k] — (I, - A)i[k] + - A

Error state equation: err|k + 1] = (1
Rload

Rload
Integral control statei[k + 1] = i[k] + K; - err[k]

equation:
Vref
[err[k + 1]] 1= A —I,-A [err[k]‘ +lz A
[k 1 - load [k load
e+ 1] K, 1 (L] 0
- J
Y

Stable if |eigenvalue| < 1

[Kim-JSSC17]

Mingoo Seok Basics of Digital Low-Dropout (LDO) Integrated Voltage Regulator 70 of 79

© 2020 IEEE
International Solid-State Circuits Conference



Imaginary Part

State Space Representation: Results

08 |

06 |

04 |

02 |

02 |

04 |

06 |

08 |

-~ : =~o
Pad | \\\
: N
: \.
: \

/ \
(4 : \
H ~ Decreasing f},
] e 1
................. l»(xxx}o()gg».»\%
\ I
\ : I
\ /!
\ | /

’
; R
: d
~ I
\5-_- ------ -
-1 0.5 0 0.5 1
Real Part

Parameters:
V,,.=500mV,
Vier=450mV,
Ricaq=450€2,
I,=25UA,
C,.:=100pF,
f,,=1MHz~100MHz,
K;=1
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Papers to See This Year

Session 25 Relevant Papers:

O 25.1: A Fully Synthesizable Distributed and Scalable All-Digital LDO in 10nm
CMOS

OO0 25.2: A 480mA Output-Capacitor-Free Synthesizable Digital LDO Using CMP-
Triggered Oscillator and Droop Detector with 99.99% Current Efficiency,
1.3ns Response Time and 9.8A/mm?2 Current Density

O 25.3: A 65nm Edge-Chasing Quantizer-Based Digital LDO Featuring 4.58ps-
FoM and Side-Channel-Attack Resistance

Session 32 Relevant Papers:

O 32.4: A 0.4-to-1.2V 0.0057mm?2 55fs-Transient-FoM Ring-Amplifier-Based
Low-Dropout Regulator with Replica-Based PSR Enhancement

0 32.5: A Scalable and PCB-Friendly Daisy-Chain Approach to Parallelize LDO
Regulators with 2.613% Current-Sharing Accuracy Using Dynamic Element
Matching for Integrated Current Sensing
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