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Abstract

 Abstract
 In recent years, time-interleaving analog-to-digital converters (ADCs) has become 

more popular, especially for high sample rate applications such as wireline 
communications

 This tutorial will cover the fundamentals of time-interleaved sampling, including 
an introduction to aliasing and an explanation of how mismatch in time-
interleaved architectures can cause aliasing artifacts to appear

 Practical methods to implement time-interleaved ADCs and combat these 
mismatch-induced effects will also be presented

 Motivation for time-interleaving
 ADC design is a tradeoff between speed, accuracy and power
 Time-interleaving gives an extra degree of freedom

 Allows us to design a high-accuracy ADC with faster speed
 Allows us to design a high-speed ADC with lower power
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Outline
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 Error Sources in Time-Interleaved ADCs

 Interim Q+A
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 Time-Interleaved ADC Architectures

 Summary and Conclusions
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What is an Analog-to-Digital Converter

 Converts from an Analog signal to a Digital signal
 Defined only at discrete points in time (Sampled)
 Has only a discrete number of possible values (Quantized)
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ADC Structure

 Sampler (Track-and-Hold) 
 Samples the continuous signal V(t) once per sample period T
 Holds the voltage V(kT) until the next sample time

 Quantizer
 Converts held voltage V(kT) to digital form D[k]
 Calculates ratio of held voltage to reference voltage VREF => D[k] ≈ V(kT)/VREF
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Track-and-Hold Sampler (T/H)

 Simple operation in principle
 Close switch to track input – switch resistance is Ron

 Open switch to hold sample – switch resistance is Roff

 Time constant = RonC => Fast if C is small and Ron is low
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Sampling Noise of T/H

 Noise Spectral Density (NSD) of switch Ron = 4kTRon 
 Large Ron=R1 => Higher NSD, Lower integrating bandwidth 1/R1C
 Small Ron=R2 => Lower NSD, Higher integrating bandwidth 1/R2C

 RMS value of sampled noise = 𝑘𝑘𝑘𝑘/𝐶𝐶 independent of Ron
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Sampling Theory

 Consider a signal V(t) sampled uniformly at Fs=1/T
 Can we reconstruct V(t) from just the samples V(kT) ?

 Nyquist theory says we can!
 But is this the only solution?
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Aliasing

 No, A(t) is also a solution!
 Set of samples V(kT) coincide with both V(t) and A(t)

 V(t) and A(t) are both Aliases of each other
 No way to tell which was the original waveform

 Need another piece of information
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Aliasing in the Frequency Domain

 Input signal V(t) is a sinewave of frequency Fin<Fs/2
 Aliases Occur at N∙Fs ± Fin for every integer N
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Aliasing in the Frequency Domain

 What if input signal has component A(f) at Frequency Fs-Fin?
 Aliases of V(f) and A(f) coincide – cannot distinguish
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Anti-Alias Filter

 Real ADC systems always include an anti-alias filter
 Or some way the input signal is limited to a single Nyquist zone

 E.g. a passive filter on a board, or an active filter on-chip
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Low-pass Anti-Aliasing Filter

 Add a Low-pass Anti-Alias filter (AAF) before the sampler
 Selects 1st Nyquist zone by suppressing all frequencies > Fs/2

 We can reconstruct the input signal V(t) without A(f)
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Band-pass Anti-Aliasing Filter

 But what if we wanted A(f) not V(f) ?
 Add a Band-pass Anti-Alias filter before the sampler

 Selects 2nd Nyquist Zone by suppressing all frequencies > Fs/2 and <Fs
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Quantizer

 Converts held voltage V(kT) to N-bit digital code D[k]
 Compare V(kT) to VREF so D[k] ≈ V(kT)/VREF
 Quantizer Error Q(kT) = D[k]∙VREF – V(kT)

 Many different architectures
 Choice depends on requirements for resolution, power, speed, latency
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Quantizer Resolution

 Number of bits (N)
 Literally, the number of bits in the output code of the quantizer
 Measure of precision, not accuracy

 Signal-to-Noise and Distortion Ratio (SNDR)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = log10
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
= log10

𝐸𝐸[𝑉𝑉2 𝑘𝑘𝑘𝑘 ]
𝐸𝐸[𝑄𝑄2 𝑘𝑘𝑘𝑘 ]

 Measure of accuracy of the conversion
 Effective Number of Bits (ENOB)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 1.76

6.02
 ENOB is number of bits an ideal quantizer needs for this SNDR
 ENOB ≤ N for all non-ideal quantizers
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Flash ADC

 Compares to 2N -1 levels at once
 Stores 2N -1 decisions bn in latches
 Converts to N-bit binary code D[k]

 Single operation 
 Very fast

 Requires 2N -1 comparators 
 63 comparators for 6-bit ADC
 1023 comparators for 10-bit ADC

 Good for 4-6 bit resolution
 Too much power, area and

input load for >7 bits
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SAR (Successive Approximation Register)

 Approximate V(kT) with a DAC output VDAC

 Use Successive Approximation algorithm
 Comparator generates bits of D[k] one at a time, starting with MSB
 Successively drives VCMP ≈ 0 so VDAC ≈ V(kT)

 DAC output VDAC ≈ D[k]∙VREF
 D[k] ≈ V(kT)/VREF at end of conversion

John P. Keane T5: Fundamentals of Time-Interleaved ADCs
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SAR ADC Implementation

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Initialize D=0 so VDAC=0
 Sample V(t) so V(kT) stored on C
 Store comparator decisions D in latches

 Forces VCMP≈0 at end of conversion
 VCMP ≈ 0  => VDAC ≈ -V(kT)
 Invert D[k] => D[k] ≈ V(kT)/VREF 
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SAR ADC Properties

 Advantages
 Small, low power, integrated T/H
 Scales well in modern CMOS processes

 Disadvantages
 Takes many comparisons in series => slow
 Quantization time much longer than sample time
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Pipelined SAR ADC

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 SAR operation pipelined to improve speed
 First stage computes MSBs D1[k], second stage computes LSBs D2[k]
 Intermediate VCMP from first stage sampled by second stage

 Fewer comparisons needed in first stage => Faster
 Buffer and additional T/H needed => More power and area
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Performance Comparison SNDR vs. Fs

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 SAR
 High SNDR
 Low sample rate

 Pipeline 
 High SNDR
 Mid Sample rate

 Flash 
 Low SNDR
 High sample rate

ISSCC 1996-2019 [1]

SAR Pipeline

Flash
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Time-Interleaved ADC [2]

 Combine M identical ADC slices, to get M x Fs/M sampling.
 Interleave input samples in Analog Domain
 Interleave output samples in Digital Domain

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

ADC 
Slice 1

ADC 
Slice 2

ADC 
Slice M

Interleave

1 2 3 4 1 24
1 2 3 3 4 1 2 3 4 1

M=4 Shown

V(t) D[k]
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Aliasing in ADC Slice with M=4

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Anti-Alias Filter (AAF) selects 1st Nyquist zone for full sample rate Fs=1/T
 ADC slice n input V(4kT+n) is V(t) sampled at Fs/4=1/4T 
 Aliases occur at N∙Fs/4±Fin => 3 alias terms in 1st Nyquist band
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Summing Interleaved Aliases

 Each ADC Slice samples the input signal at Freq=Fin
 Fundamental at Freq=Fin has same phase for all slices

 Since it samples at Fs/4, each ADC Slice also sees an alias at Freq=Fs/4-Fin
 Alias has same frequency for each slice but different phase

 Alias terms sum to zero if all slices match exactly
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Time-Interleaved ADC Implementation

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Input Buffer drives M T/Hs 
 Only one T/H samples at a time
 Re-interleave Quantizer outputs digitally
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Time-Interleaved Applications

 Wireless
 >10b at 1-10GS/s
 Interleave M<10
 E.g. Base-station
 5GS/s 12-bit

 Wireline / Optical 
 <7b at 1-100GS/s
 Interleave M>20 
 E.g. 56Gbps PAM4
 28GS/s 6-bit

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

ISSCC  1996-2019 [1]

Wireline/Optical

Wireless
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Why Interleave?

 Highest sample rate
 More power efficient 

at Fs > 1GS/s
 Highest Schreier Figure 

of Merit FOMS*
 Interleaving M power 

efficient ADCs can be 
lower power than one 
fast ADC

*FOMS=SNDR+10log10(P/BW)
P=Power, BW=Bandwidth

John P. Keane T5: Fundamentals of Time-Interleaved ADCs
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The Cost of Interleaving

 Increased Area and Complexity
 More Input load reduces bandwidth
 New sources of error

 Offset, Gain and timing Mismatch
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Time-Interleaved ADC Mismatch

 Equivalent to a single fast ADC if ADC Slices are identical
 But what if the ADC Slices don’t match?

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

M=4 Shown

1 2 3 4 1 24
1 2 3 3 4 1 2 3 4 1

Gain=G1
Offset=O1

Gain=G2
Offset=O2

Gain=GM
Offset=OM

Interleave

D2

DM

D1

DV(t)
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Offset Mismatch

 ADC slices have different offsets due to mismatch
 Looks like an added periodic offset with period M
 Always the same regardless of input amplitude or frequency

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

M=4 Shown
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Gain Mismatch

 ADC Slices have different Gains due to mismatch
 Looks like amplitude is modulated by a waveform with period M
 Error is larger for large input signal amplitudes

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

M=4 Shown
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Timing Mismatch

 ADC Slices do not sample T apart due to timing mismatch
 Looks like phase is modulated by a waveform with period M
 Error depends on signal slope when sampling

 Larger error for large amplitudes and/or high frequencies

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

M=4 Shown
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Interim Q+A Session ( 5 minutes )

Please ask questions that you
feel are essential to follow 

the rest of this tutorial
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Frequency Spectrum of Interleave Errors

 Output D[k] interleaved from M slice outputs Dn[k]
 Dn[k] may mismatch in gain Gn , offset On and timing tn

 How do these errors look in the frequency domain?

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

D1Gain=G1
Offset=O1

Gain=G2
Offset=O2

Gain=GM
Offset=OM

Interleave

D2

DM

Dn[k]=GnV(kT+tn)+OnDV(t)

Gain
Mismatch Timing

Mismatch Offset
Mismatch
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Frequency Spectrum of Interleave Errors

 ADC mismatch errors usually considered as noise
 Limits Signal-to-Noise-and-Distortion Ratio (SNDR) of ADC

 But mismatch errors are concentrated at specific frequencies
 Call these errors “spurs”
 Limits Spurius-Free Dynamic Range (SFDR) of ADC
 Important for Wireless applications

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

FreqFin Fspur3

Signal
(dB)

Fspur1 Fspur2 Fspur4

SFDR
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Offset Mismatch Errors

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Sample 1 2 3 4 5
ADC 1 G∙V(T)+O1 G∙V(5T)+O1

ADC 2 G∙V(2T)+O2

ADC 3 G∙V(3T)+O3

ADC 4 G∙V(4T)+O4

D[k] G∙V(T)+O1 G∙V(2T)+O2 G∙V(3)+O3 G∙V(4T)+O4 G∙V(5T)+O1

E(kT)=error O1 O2 O3 O4 O1

 Assume all ADCs have the same gain G
 Each ADC has a different offset O1,O2,O3, etc.
 Error E(kT) is sequence O1,O2,…,OM,O1,O2,… 

 Repetitive sequence with period MT
 How does this error look in the frequency domain?
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Frequency Spectrum of Offset Mismatch

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Error is periodic sequence in time with period MT
 Fourier series representation

 Tones at every integer multiples of FS/M
 Amplitude and phase of spurs depend on offset mismatch
 Spurs are independent of input signal 

M=4 ShownError
E(kT)

time

Error
E(f)

FreqFs/4 Fs/2 3Fs/40
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Gain Mismatch Errors

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Sample 1 2 3 4 5
ADC 1 G1∙V(T) G1∙V(5T)
ADC 2 G2∙V(2T)
ADC 3 G3∙V(3T)
ADC 4 G4∙V(4T)
D[k] G1∙V(T) G2∙V(2T) G3∙V(3T) G4∙V(4T) G1∙V(5T)
E(kT) ∆G1∙V(T) ∆G2∙V(2T) ∆G3∙V(3T) ∆G4∙V(4T) ∆G1∙V(5T)

 Each ADC slice has a different gain G1,G2,G3, etc.
 Average gain is GAVG=(G1+G2+…+GM)/M

 Slice n gain mismatch is ∆Gn=(Gn –GAVG) 
 Error E(kT) is ∆Gn multiplied by input sample V(kT)
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Envelope of Gain Mismatch Errors

 Output D[k] consists of M interleaved signals
 Each has envelope of input V(t), but different Gain Gn

 Error E(kT) consists of M interleaved signals
 Each has envelope of input V(t), but different Gain ∆Gn=(Gn-GAVG)

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Error
E(kT)

Output
D[k]

k

time
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Frequency Spectrum of Gain Mismatch

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Gain Error ∆G(kT) is periodic sequence in time with period MT
 Fourier series representation ∆G(f) has tones at every integer N∙FS/M

 Multiply ∆G(kT) by sampled input signal V(kT) with spectrum V(f)
 Just like mixing or amplitude modulation

 Multiplication in time domain equivalent to convolution in frequency domain

M=4 Shown
Gain
Error

∆G(kT) time

∆G(f)

freqFs/4 Fs/2 3Fs/40

Sampled
Input
V(kT)

V(f)

-Fin-Fs/2

time

freq

X

Fin Fs/2

*
0
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Frequency Spectrum of Gain Mismatch

 E(f) has a scaled copy of input signal at every N∙Fs/M±Fin
 Amplitude and phase of spurs depends on gain mismatch

 Overall amplitude of E(f) increases with amplitude of input V(f)

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Error
E(kT)

time

Fs/4-Fin Fs/4+Fin
Fs/2-Fin

Error
E(f)

Fs/2Fs/4 Freq
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Sample Time Error

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Voltage error is slice timing error tn multiplied by slope of V(t) :

V’ 𝑘𝑘𝑘𝑘 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑎𝑎𝑎𝑎 𝑡𝑡 = 𝑘𝑘𝑘𝑘

time

Voltage

kT kT+tn

V(t)

V(kT+tn)

V(kT)
Slope = V’(t) Voltage Error ≈ tnV’(kT)

Sample Time Error = tn

46 of 73



© 2020 IEEE 
International Solid-State Circuits Conference

Timing Mismatch Errors

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Sample 1 2 3 4 5
ADC 1 G∙V(T+t1) G∙V(5T+t1)
ADC 2 G∙V(2T+t2)
ADC 3 G∙V(3T+t3)
ADC 4 G∙V(4T+t4)
D[k] G∙V(T+t1) G∙V(2T+t2) G∙V(3T+t3) G∙V(4T+t4) G∙V(5T+t1)
E(kT) G∙t1∙V’(T) G∙t2∙V’(2T) G∙t3∙V’(3T) G∙t4∙V’(4T) G∙t1∙V’(5T)

 Each ADC slice has a different timing error t1,t2,t3, etc.
 Error E(kT) is slice timing error tn multiplied by slope V’(t)
 Timing mismatch similar to gain mismatch
 Multiplied by slope V’(t) instead of V(t)
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Frequency Response of Slope Operation

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Consider signal V(f) with two frequency components at Fin1 and Fin2
 Fourier transform :  𝑉𝑉𝑉(𝑘𝑘𝑘𝑘) = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =>  𝑉𝑉𝑉(𝑓𝑓) = 𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋(𝑓𝑓)
 High-pass response attenuates Fin1 relative to Fin2
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Frequency Spectrum of Timing Mismatch

 Timing error like gain error with envelope of V’(t) instead of V(t)
 No component at Fin1 or Fin2 as average timing mismatch is zero.

 E(f) has scaled alias of V’(f) at every N∙Fs/M±Fin1 and N∙Fs/M±Fin2
 Amplitude of spurs increases with frequency and amplitude of input V(f)

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Freq

Input
V(f)

Fs/2

FreqFs/4-Fin1 Fs/4+Fin1 Fs/2-Fin1

Error
E(f)

Fs/4Fin1 Fin2

Fs/2-Fin2
-Fs/4+Fin2

3Fs/4-Fin2
Freq

Slope
V’(f)

Fs/2Fs/4Fin1 Fin2
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ADC Output Spectrum with M=4

 Overall spectrum of ADC output code D(kT) is D(f)
 Offset spurs at N∙Fs/M => independent of input signal
 Gain/Timing spurs at N∙Fs/M ± Fin

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

FreqFs/4-Fin1 Fs/4+Fin1 Fs/2-Fin1

Output
D(f)
(dB)

Fs/2-Fin2

-Fs/4+Fin2
3Fs/4-Fin2

Fs/2

Fin1 Fin2

Fs/40

Gain/Timing spurs for Fin1
Gain/Timing spurs for Fin2

Offset spurs
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SFDR vs. Input Amplitude

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Input
Amplitude (dB)

Max Spur
Amplitude

(dB)

Input Signal

Gain/Timing
Mismatch

Offset
Mismatch

 Offset mismatch limits SFDR at small input amplitude
 Gain and Timing mismatch limits SFDR at large input amplitude

 Mostly gain mismatch at low frequencies, timing mismatch at high frequencies

SFDR
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Summary So Far

 Time-interleaved ADCs popular for >1GS/s
 Highest sample rate
 More power efficient

 Mismatch spurs limit performance
 Offset spurs at fixed amplitude and frequency
 Gain/Timing spurs at alias frequencies of interleave rate

 How do we implement a time-interleaved ADC to minimize these 
effects?
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Outline

 Background and Motivation

 Error sources in Time-Interleaved ADCs

 Interim Q+A

 Frequency Spectrum of Interleave Errors

 Correction of Interleave Errors

 Time-Interleaved ADC Architectures.

 Summary and Conclusions
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Correcting Offset Mismatch - Digital

 Digital Correction
 Add offset digitally

 Unlimited precision
× Reduces full scale range
 ADC Clipping occurs

before correction

OffsetDn = -GnOn
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Correcting Offset Mismatch - Analog

 Analog Correction
 Inject offset using DAC

 Maintains full scale range
× Limited precision
 Usually combine both

Analog and Digital
 Analog Coarse
 Digital Fine

OffsetAn+OffsetDn/Gn=-On
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Correcting Gain Mismatch - Digital

 Digital Correction
 Use Digital Multipliers

 Unlimited precision
× Multipliers can be 

expensive

GainDn = GAVG/Gn
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Correcting Gain Mismatch - Analog

 Analog Correction
 Use DACs to adjust

VREF per slice
 Low Power
× Limited precision
 Use for low resolution

applications

GainAn = GAVG/Gn
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Correcting Timing Mismatch - Analog

 Analog Correction
 Adjustable Delay CLK Buffer

 Low cost implementation
 Can be very precise
× Extra delay in sampling 

clock
 Increases random delay 

variation (jitter)

TimingAn = -tn
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Correcting Timing Mismatch - Digital

 Digital Correction
 Estimate Slope Ḋ

 Simple clock path
 Lowest jitter

× Expensive DSP
× Only works in one

Nyquist band
× Limited to ~90% of 

Nyquist frequency
TimingDn = -tn
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Measuring Mismatch Errors

 How do we measure mismatch errors so they can be corrected?
 Complex topic with a lot of active research ( See Ref. [c] )

 Foreground/Offline
 Apply known input signal V(t) e.g. sinewave of known frequency.
 Analyze output of ADC Slices for differences in offset, gain, phase.
 Must interrupt operation to re-calibrate for temperature, supply drift etc.

 Background/Online
 Works while ADC is converting normal signal
 Allows tracking temperature, supply changes etc.
 Many methods analyze statistics of ADC outputs

 Not always robust for all input signals
 What if the input signal looks like a mismatch error?

John P. Keane T5: Fundamentals of Time-Interleaved ADCs 60 of 73



© 2020 IEEE 
International Solid-State Circuits Conference

Outline

 Background and Motivation

 Error Sources in Time-Interleaved ADCs

 Frequency Spectrum of Interleave Errors

 Interim Q+A

 Correction of Interleave Errors

 Time-Interleaved ADC Architectures

 Summary and Conclusions

John P. Keane T5: Fundamentals of Time-Interleaved ADCs 61 of 73



© 2020 IEEE 
International Solid-State Circuits Conference

Time-Interleaved ADC Architecture

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Input Buffer drives M T/Hs 
 One T/H samples at a time
 Re-interleave A2D outputs digitally
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Sampling Bandwidth

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Parasitic Cap. Cp
 Design  Cp << C
 But M∙Cp can be >> C

 Source impedance Rs
 Design Rs << Ron
 Costs power

 Input pole at 1/RsMCp
 Can limit Bandwidth! 
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Front Rank T/H [3]

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 Front Rank T/H sampling at Fs=1/T
 No timing mismatch, wide bandwidth
 New kT/C sampling noise from Front Rank
 E.g. ADC slice C => 2C to keep total kT/C noise the same

 T/H still drives M slices => Lots of extra power!
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2-way Interleaved Front Rank T/H

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

 2 Front T/Hs sampling at Fs=1/2T
 Each T/H drives half of ADC slices
 New interleave errors from Front Rank Mismatch
 Can extend Front Rank interleaving to 4 or more 
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Random Chopping [5]

 Multiply V(kT) by pseudo-random sequence R=+/-1 to randomize sign
 Multiply ADC output by same sequence R to restore sign (R2=1)

 Randomizes sign of offset On in D[k] => No longer periodic => No spurs
 Gain/Timing mismatch unaffected

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Gain=G1
Offset=O1

Gain=G2
Offset=O2

Gain=GM
Offset=OM

De-interleave Interleave

D2

DM

D1

D[k]V(kT) R(kT)V(kT)

R[k]=+1,+1,-1,…R(kT)=+1,+1,-1,…
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Random Slice-Order Shuffling [6]

 Interleave M+∆M ADC slices, each with MT conversion time
 1+ ∆M ADC slices available at some sample times => Extra slices needed
 Randomize which slice is used based on pseudo-random sequence R[k]
 Interleave data using same sequence R[k] to get correct sample order D[k]

John P. Keane T5: Fundamentals of Time-Interleaved ADCs

Gain=G1
Offset=O1       

Gain=G2
Offset=O2       
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5
5 2
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Random Slice-Order Shuffling

 Randomizing slice order spreads out spurs in Frequency
 Improves SFDR for offset, gain and timing mismatch spurs
 Larger ∆M => More ADC choices => More spur reduction

 Adds a lot of complexity to clock path implementation
John P. Keane T5: Fundamentals of Time-Interleaved ADCs
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Summary

 Time-Interleaved ADCs are attractive for high sample 
rate applications

 Mismatch in ADC slices limits SNDR performance
 Concentration of errors as spurs also limits SFDR

 Correction techniques exist to address these errors
 Front-rank T/H improve bandwidth and reduces timing 

mismatch errors
 Randomization techniques can spread mismatch errors 

in frequency to improve SFDR
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ISSCC 2020 – Papers of Interest

Suggested papers based on Advance Program:

 Session 16
 Paper 16.1 is an 18GS/s 12-bit ADC

 8-way time-interleaved pipelined ADCs
 2-way time-interleaved front-rank T/H with optional randomization

 Paper 16.2 is a 10GS/s 8-bit ADC
 4-way time-interleaved time-domain ADCs

 Session 6
 Paper 6.1 is a 112Gb/s PAM-4 Wireline Transceiver
 Uses a 36-Way time-interleaved 56GS/s SAR ADC
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Further Reading

 Other tutorials and overviews:
a) B. Murmann, "A/D converter circuit and architecture design for high-speed 

data communication," Proceedings of the IEEE 2013 Custom Integrated 
Circuits Conference, San Jose, CA, 2013, pp. 1-78

b) A. Buchwald, "High-speed time interleaved ADCs," in IEEE 
Communications Magazine, vol. 54, no. 4, pp. 71-77, April 2016

c) K. C. Dyer et al., "Calibration and Dynamic Matching in Data Converters: 
Part 2: Time-Interleaved Analog-to-Digital Converters and Background-
Calibration Challenges," in IEEE Solid-State Circuits Magazine, vol. 10, no. 
3, pp. 61-70, Summer 2018

 These tutorials provide good overviews of this topic 
 References b) and c) also provide a comprehensive list of primary 

references
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