Analog Building Blocks of DC-DC Converters

Bernhard Wicht Institute of Microelectronic Systems Leibniz University Hannover, Germany bernhard.wicht@uni-hannover.de

February 16, 2020

Outline

Introduction

- Power Transistors
- □ Gate Drivers
- Level Shifters
- Control Loop

System Design

Outline

Introduction

- Power Transistors
- □ Gate Drivers
- □ Level Shifters
- Control Loop

□ System Design

DC-DC Conversion

Power Management Systems

Part of complex ICs or separate power management units: Multiple DC-DC converters to supply μ Cs, MPUs, DSPs, analog & mixed-signal circuits

Handheld devices, PDAs, consumer products: $V_{in} \sim 4V$, moderate conversion ratios

Automotive / Industrial, server applications: $V_{in} > 10 - 60V$, larger conversion ratios

DC-DC Conversion Fundamentals

Pulse-width modulation: Much higher efficiency than a linear regulator (LDO) Challenges: Increasing switching losses, EMC, parasitic coupling

Bernhard Wicht

Analog Building Blocks of DC-DC Converters

Analog Building Blocks in DC-DC Converters

Blocks of Interest:

- Power stage: switch, gate driver, level shifter
- Error amplifier and control loop components
- Current sensing

Technology Options / Devices

- □ Various HV, LV transistors
- Buried layer or trench isolation
- Zener diodes, Schottky and power diodes
- □ OTP memory, EEPROM, flash memory

Outline

□ Introduction

Power Transistors

□ Gate Drivers

□ Level Shifters

Control Loop

□ System Design

Power Switch Configurations

□ Transistors can be on-chip (integrated) or discrete (external)

- On-chip: Any transistor can be used as a power device, if voltage ratings are suitable
- □ High-power and high-voltage applications prefer n-type transistors due to lower on-resistance R_{DSon}

Power Transistors

Discrete power FET (external component)

On-resistance ~ $10...100m\Omega$ Drain currents > 1...10A

Integrated power FET in CMOS and BCD technologies

On-resistance $< 1\Omega$ Drain currents < 1...2AFET types for > 60V available

Transistor Switching Behavior and Losses

Power MOSFET: DMOS

Body Diode in Standard CMOS Devices

Body diode: always present and associated with a parasitic bipolar structure
Inductive switching: losses due to VF and reverse recovery
Risk of back-supply (diode conducts even if switch is off)

Parasitic Effects

Isolation of Circuit Blocks

Common isolation of all p-/n-channel devices

□ Rule: Isolate every (sensitive) circuit block (if possible)

Shielding against substrate noise coupling

□ Similar to guardring with full "incapsulation"

Substrate Coupling

Voltage slopes > 10V/ns cause capacitive charging currents (~100mA) during transition \rightarrow substrate debiasing >4V \rightarrow malfunction of analog <u>and</u> digital

Back-side metallization reduces coupling by ~100%, conducting trench by ~90% (if available), p-Guardring is less efficient but readily available

Switch Stacking

Useful Configurations

Shunt Regulator

Alternative to linear regulator, often as a coarse supply for a noncritical digital block, analog standby or as a pre-regulator

"Open loop" \rightarrow fast, but not very precise

Interim Q&A Session

Please ask questions that you feel is essential to follow the rest of this tutorial

Outline

□ Introduction

- Power Transistors
- □ Gate Drivers
- □ Level Shifters
- Control Loop

□ System Design

Gate Driver Block Diagram and Circuits

Main circuit blocks:

- Power FET (n/p-type)
- Protection
- LS / HS driver
- Level shifter
- □ Gate supply
- Dead time control (only for bridges)

Gate Driver Fundamentals, Key Parameters

Function: Turn-on/off power switch with sufficient gate overdrive (voltage) and appropriate driving capability (current over time)

□ V_{drv} defines the gate-source voltage of the power transistor 5V □ Gate driver sink / source resistance R_{drv} (at given I_{gate}) 1Ω □ Sink / source peak current I_{peak} 1A □ Parasitic L_{aate} : speed \downarrow , dv/dt triggered turn-on, max. V_{GS}

Low-Side Driver

Circuit structure:

Level shifter followed by driver stage(s) (CMOS inverter)
Single driver stage if small power FET (low C_{gate})
Cascaded driver stages if large power FET (large C_{aate})

Example: Integrated Half-Bridge Driver

Analog Building Blocks of DC-DC Converters

Cascaded Driver Stages

Different design goals depending on application needs:

- Design for minimum delay
- Design for minimum power (correlates with die area)
- □ Always: Ensure dv/dt immunity \rightarrow adjust R_{drv} by W/L of last driver stage

Cascaded Driver: Optimization for Speed

Speed optimization: *n* stages, each increasing in driver strength (*W*/*L*) by α

Optimization for Power Efficiency and Area

Optimization for speed does not result in minimum driver power loss:

- \Box Too many stages: Increasing driver losses E_{driver}
- □ Too few stages: Increasing power FET switching losses E_{sw} due to larger rise/fall times 50 ______

Options:

- □ Fixed-taper buffer [Villar, ISCAS 2005]
- Combination of fixed-taper and variable-taper buffers [Vemuru, JSSC Sept. 1991]

Rule: Fewer stages $n \rightarrow$ correlates to larger scaling factors $\alpha \rightarrow 6...>10$

Optimization for Power Efficiency: Last Stage

Further power reduction by eliminating cross-conduction in last driver stage \rightarrow separate branches for pull-up / down path \rightarrow no area penalty

Reduction of Cross-conduction in Last Stage

- Large delay (switching signal propagates 2x through buffer)
- Delay margin required to cope with process variations

Adjust width W found for optimum speed or losses by asymmetry factor AF = 20-30%:

Fast Turn-off of MN3, slow turn-on MP3 and in pre-stages

High-Side Driver

High-Side Driver

High-Side Gate Supply: Bootstrapping

Similar to charge pump with oscillator replaced by half-bridge (power stage)

V_{boot}

Sw

 \Box Turn off one FET \rightarrow then turn on other FET with dead time in between

□ To avoid cross-conduction (damage!) and minimize losses

Cross-currents, body-diode (VF, Qrr), zero-voltage switching, >25% loss reduction

 \Box Optimum dead time dependent depends on operating point (V_{in} , load,...)

- Constant delay (with trimming)
- Adaptive delay: Sensing of off-state \rightarrow then turn on other FET
- Predictive delay: Cycle-by-cycle control, complex

Dead Time Control Concepts (1)

Dead Time Control Concepts (2)

Predictive mixed-signal dead time control [Wittmann JSSC July 2016]:

□ 10MHz buck converter, 125ps dead time resolution by inverter delay line □ Low-side turn-on if V_{sw} ~0V, sensed by S&H, no body diode conduction □ Loss reduction of up to 30% → 6% higher efficiency at 10 MHz

Outline

□ Introduction

- Power Transistors
- □ Gate Drivers
- Level Shifters
- Control Loop

□ System Design

Basic Level Shifter Configurations

Cross-coupled Level Shifter with Full HS Swing

 V_{high}

M3

M5

 V_{SG} of cascodes M5, M6 prevents logic '0' level at driver input \rightarrow full high-side swing achieved by bypass devices M7, M8

Bernhard Wicht

 V_{casc}

Moghe, JSSC Feb. 2011

both inverters with

switching point near

 V_{drv} (strong pmos,

weak nmos)

√_{outn}

Vouto

M6

/N ii

 \rightarrow faster switching and reduced

power consumption \rightarrow M7, M8 can

Inverters increase loop gain

become minimum size

Sizing of the Cross-coupled Level Shifter (1)

M1 (M2) needs to be strong enough to pull drain of M3 (M4) below V_{drv} by one $V_{th} \rightarrow W/L$ follows from condition $I_1 = I_3$ (= I_5)

$$\left(\frac{W_1}{L_1}\right) \left/ \left(\frac{W_3}{L_3}\right) = 2\frac{\mu_{op}}{\mu_{on}}\frac{(V_{drv} - V_{th})V_{sdx}}{(V_{DDL} - V_{th})^2}$$
$$V_{th} = V_{thn} = |V_{thp}|$$

Design guideline:

1. Use minimum *L* and $V_{sdx} \ge V_{th}$ (higher V_{sdx} gives higher speed)

Moghe JSSC Feb. 2011

- 2. Choose min. W1, W3 (and W5) that fulfill sizing equation(s)
- 3. Increase W1, W3 (and W5) concurrently to enhance speed
- **4.** W_1 may be set even larger to faster charge parasitic cap at drain of M1, M3

Example: $\mu_{op}/\mu_{on} = 1/3$, $V_{drv} = 12V$, $V_{DDL} = 3.3V$, $V_{th} = 0.8V \rightarrow$ Width ratio M1 to M3 = 0.96 ~ 1

Sizing of the Cross-coupled Level Shifter (2)

M1 (M2) needs to be strong enough to pull drain of M3 (M4) below V_{drv} by one $V_{th} \rightarrow W/L$ follows from condition $I_1 = I_3$ (= I_5)

Bernhard Wicht

Analog Building Blocks of DC-DC Converters

Outline

□ Introduction

- Power Transistors
- □ Gate Drivers
- □ Level Shifters
- Control Loop

□ System Design

Regulation Schemes: Voltage Mode Control

Two-pole plant transfer function: Change in D has $L-C_{out}$ time constant \rightarrow relatively slow, complex loop stabilization

Error Amplifier

Influence on line / load regulation, transient response, etc.

Soft Start

To prevent inrush currents at start-up: Soft start input at error amplifier replaces fixed reference by slowly increasing ramp of \sim 1-10 V/ms

Sawtooth Generator

Settling time of falling edge limits duty cycle and switching frequency

Preferred solution: Integrator with fast and precise refresh, saw tooth bias level easily controlled by V_{ref} , can be combined with time-interleaved approach (two integrators)

V_{ref}

Bernhard Wicht

 V_{DD}

 V_s

bias

Control Loop Analysis and Stability

Frequency compensation through H(s) by inserting zeros (and poles) $\rightarrow Z_o(s)$

Frequency Compensation

 \rightarrow On-chip integration by means of capacitance multiplier

Cap Multiplier: Fully Integrated Compensation

Regulation Schemes: Current Mode Control

 V_c is compared to a ramp voltage V_{sense} derived from the inductor current I_L , forming a second, inner control loop

□ Excellent line transient response $\rightarrow V_{out}$ independent of V_{in} □ Inherent I_L current limit (by limiting V_c)

Control Loop Analysis Current Mode Control

Current Mode: Subharmonic Oscillations

Unconditional instability above 50% duty cycle (step-down)

→ perturbation ΔI_L of inductor current leads to subharmonic oscillations at $f_{sw}/2$

Current Mode Control with Slope Compensation

 $(V_c - V_{slope})$ gets compared to a ramp voltage V_{sense} derived from the inductor current \rightarrow two implementation options CLK

Slope Compensation: Circuit Design (1)

Option 1: Difference $(V_c - V_{slope})$ is generated in the current domain, fed into replica FET and compared to voltage across power FET = $V_{sense} = V_{sw} = R_{DSon} \cdot I_L$

Concept can also be implemented on high-side FET (more complex)

Slope Compensation: Circuit Design (2)

Example for Option 2 with replica current sensing and slope compensation

Current Sensing

□ Open loop:

- Over-current detection \rightarrow turn-off power FET
- Continuous current measurement

□ Closed loop:

- Current limit
- Current controlled DC-DC conversion

Current Sensing Concepts and Circuits (1)

*R*_{DS} Sensing Replica Sensing: Sense FET + Sense Amplifier

Current Sensing Concepts and Circuits (2)

Sense FET + Sense Amplifier: Practical implementation

□ Accuracy: Mismatch (M, amp offset), variation of R_{out} (trimming), loop gain □ Lower input current limited: $I_{in} \ge MI_{bias}$

 \Box Finite I_{bias} causes a DC error:

 $R_{ML}(I_{in} + I_{bias}) = R_{MS}(I_{out} + I_{bias}) \rightarrow I_{in} = M(I_{out} + I_{bias}) \approx MI_{out}$ for $I_{bias} \ll I_{out}$

Current Sensing Concepts and Circuits (3)

Outline

□ Introduction

- Power Transistors
- □ Gate Drivers
- □ Level Shifters
- Control Loop

System Design

Protection and Diagnostics

Thermal Protection

Protects the IC from damage at high temperature

Floorplan

- Rule: Separate high-voltage and low-voltage domains
- Reason: HV-Isolation = Spacing = Chip Area = Cost
- □ IC level copper metallization
- □ Thermal analysis
- Mechanical stress: avoid corners / edges for sensitive blocks (bandgap)

Pinout, Grounding and Supply Guidelines

- □ Supply and ground pins adjacent, bypass-C placed here close to pins
- □ Short bond wires for power pins and fast signals $(R \lor, L \lor) \rightarrow$ close to the middle of one side of the die, vice versa: corner pins for quite signals
- □ Use separate bond pads for each domain or at least apply star connections, consider double / tripple-bond
- □ IC-Level wiring in groups:
 - Noisy lines (digital, switching power)
 - Supply lines (high current)
 - Sensitive lines (analog)

Pinout, Grounding and Supply Guidelines

Conclusion

Session 11 "DC-DC Converters" Relevant Papers:

- □ 11.2: Resonant SC converter with on-chip L-C, level shifter, switch stacking
- □ 11.3: One-Step 325V-to-3.3–10V DC-DC, bootstrap gate supply
- □ 11.4: 48 80V input 2MHz GaN DC-DC, current sensing (DCR)
- □ 11.7: Buck-boost DC-DC, 2.5-5V input, adaptive dead time

Session 18 "GaN & Isolated Power Conversion" Relevant Papers:

- □ 18.2: 400V Offline monolithic GaN IC with control loop
- □ 18.6: 60A, 48V-to-1V DC-DC, dynamic level shifter

Session 32 "Power Management Techniques" Relevant Papers:

□ 32.2: Piezoelectric Energy Harvesting IC

References (1)

- □ J. Wittmann et al., "MHz-Converter Design for High Conversion Ratio, " ISPSD 2013
- T. Efland et al., "Bipolar Issues in Advanced Power BiCMOS," BIPOLAR/BiCMOS Circuits and Technology Meeting, 2000
- □ J. Wittmann et al., "Substrate Coupling in Fast-Switching Integrated Power Stages," ISPSD 2015
- □ P. Renz et al., "A Fully Integrated 85%-Peak-Efficiency Hybrid Multi-Ratio Resonant DCDC Converter with 3.0-4.5V Input and 500µA-120mA Load Range," ISSCC 2019
- B. Serneels et al., "A high-voltage output driver in a 2.5-V 0.25-um CMOS technology," JSSC, March 2005
- □ A. Annema et al., "5.5-V I/O in a 2.5-V 0.25-um CMOS technology," JSSC, March 2001
- □ S. Herzer et al., "Capacitive-coupled Current Sensing and Auto-ranging Slope Compensation for Current Mode SMPS with Wide Supply and Frequency Range", ESSCIRC 2009, pp. 140 143
- R. Jaeger, Comments on "An optimized output stage for MOS integrated circuits," JSSC, March 1975
- □ N. Li et al., "CMOS tapered buffer", IEEE JSSC, April 1990
- G. Villar et al., "Energy optimization of tapered buffers for CMOS on-chip switching power converters," ISCAS 2005
- □ S. Vemuru et al., "Variable-Taper CMOS Buffer," JSSC, Sept. 1991, pp.1265-1269
- □ S. Hamzaoglu, "Split-path skewed (SPS) CMOS buffer...", IEEE TCAS II, Oct 2001
- □ J. Wittmann et al., "An 18V Input 10MHz Buck Converter with 125 ps Mixed-Signal Dead Time Control," JSSC, July 2016
- □ J. Wittmann, "Integrated High-Vin Multi-MHz Converters", Springer 2020

References (2)

- □ A. Barner et al., "A 10 MHz, 48-to-5V Synchronous Converter with Dead Time Enabled 125 ps Resolution Zero-Voltage Switching," APEC 2016
- □ Moghe et al., "Nanosecond Delay Floating High Voltage Level Shifters ...," JSSC, Feb. 2011
- □ N. Mohan et al., "Power Electronics Converters, Applications, and Design" 3rd ed. New York: Wiley, 2003
- Gabriel A. Rincon-Mora, "Active Capacitor Multiplier in Miller-Compensated Circuits," JSSC, January 2000
- K.-H. Chen et al., "Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation," IEEE TPEL, pp.180-188, Jan. 2008
- R. Ridley, "A more accurate current mode control model" Ridley Engineering Inc., 2001
- C. F. Lee et al., "A Monolithic Current-Mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique," JSSC, January 2004
- □ W.H. Ki, "Current sensing technique," U.S. Patent 5,757,174, May 26, 1998.
- D. Ma et al., "A 1.8V Singleinductor Dual-output...," VLSI Symp. Circ., June 2001
- □ H. Y. H. Lam et al., "Loop Gain Analysis and ...," ISCAS 2004
- □ P. Renz et al., "A 40V Current Sensing Circuit with Fast on/off Transition ...," MWCAS 2016