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Why DC-DC Converters?
Battery-Operated Portable Electronic Gadgets

Energy Source
(Li-Ion: 2.7V – 4.2V)

DC-DC Converters (η → 1)

Analog Part
(e.g. VDD: 1.8V)

Digital Part
(e.g. VDD: 0.9V)

RF Part
(e.g. PA VDD: 5V)

Interface Part
(e.g. VDD: 1.2V)

 Battery voltage is time-varying.
 DC-DC converters are part of power management to provide regulated voltages.
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Types of DC-DC Converters

 Low Dropout Regulator (LDO)
 Continuous-time system with a single power transistor

 Switched-Mode Power Converter (SMPC)
 Sampled-data system using inductor for energy storage

 Switched-Capacitor Power Converter (SCPC)
 Sampled-data system using capacitor for energy storage

LDO SMPC: Buck Converter
SCPC: Doubler
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Low Dropout Regulator

 Based on the LDO structure, Vout is always smaller than Vin.
 As input current ≈ load current, η approximately equals Vout/Vin (=1-(Vdropout/Vin)).
 In practice, Power pMOS can reduce Vdropout to about 0.1V – 0.2V and is more 

commonly used than nMOS counterpart for maximizing η.
 Power FET does not switch during operation, so Vout is low noise.
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Switched-Capacitor Power Converters (1)

 By changing connections of switches and capacitors, different conversion 
ratios between Vin and Vout (step-up, step-down or inverting) can be realized.

 Flying capacitor Cf is used for temporary energy storage.
 Vout relates to Vin with a fixed conversion ratio via two complimentary clock 

phases φ1 and φ2.

Vout = 2Vin Vout = 0.5Vin
Vout = -Vin
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Switched-Capacitor Power Converters (2)

 Vout=(N/M)·RL/(RL+RO)·Vin, so Vout can be regulated by adjusting output 
resistance RO of the power stage; where N/M is the conversion ratio.

 Ideal η=(Vout·Iout)/Vin·Iin=(Vout/Vx)·(Vx/Vin)·(Iout/Iin)=Vout/Vx (i.e. η of LDO).
 Lossless Vout regulation is to change N/M when Vin varies.
 Numbers of flying capacitors and switches however grow rapidly when the 

resolution of input-output conversion ratio increases.

Vout = 2Vin
Vout = 2/2.5/3/4VinModel of SCPC H. Lee et. al., TVLSI, Apr. 2015, pp. 712-722.



Tutorial: Fundamentals of Switched-Mode Power Converter Design
© 2018 IEEE 
International Solid-State Circuits Conference 7 of 70

Switched-Mode Power Converters

 With different configurations of L and two switches, two most common topologies: 
buck (step-down) and boost (step-up) in portable applications are illustrated.

 The converter operates in two complementary phases with an inductor for 
temporary energy storage.

 The converter provides continuous conversion ratio between Vin and Vout.

Buck Converter Boost Converter
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Characteristics of DC-DC Converters

Types Pros Cons

Inductor-
less

LDO
 Simplest and lowest cost
 Low output noise

 No step-up conversion
 Poor efficiency if the voltage 
mismatch between input and 
output is large

SCPC
 Step up / down conversion
 Low cost
 High energy density

 High switch count
 Tradeoff between power 
efficiency and power density

Inductor-
based SMPC

 Highest power efficiency
 Step up / down conversion

 Relatively high cost
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Outline

 SMPC Basics and Design Considerations

 Control Methodologies and Design Issues
 Voltage-mode PWM and compensator design
 Current-mode PWM and compensator design
 Current sensor designs
 Gate driver designs
 Hysteretic control

 Advanced Topic
 Three-Level DC-DC Converter
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SMPC Basic

 Vout is a function of duty ratio D (0 ≤ D ≤ 1) and Vin.
 Power efficiency (η) = 100% (ideal) with a lossless switch, diode and LC filter.

Buck Converter: Vout<Vin
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DC-DC Topologies of SMPC

Buck: Step-down only   Boost: Step-up only 

Flyback (buck-boost): Step-
up or –down, and Vout and Vin
with opposite polarities

Non-inverting Flyback: Step-up or 
–down, and Vout and Vin with the 
same polarity
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Continuous Conduction Mode

Buck: Step-down

Boost: Step-up

 The converter operates in continuous conduction mode (CCM) if the 
inductor current is always larger than 0 in the entire switching period Ts.
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Buck Converter in CCM

 The voltage conversion ratio can be obtained using Volt-Second 
Balance.

 Note: Vl in state 1 (φ1) = Vin – Vout and Vl in state 2 (φ2) = -Vout
assuming ideal switches and inductor.

D
V
V

)D1(VD)VV(
)D1(mDm

in

out

outoutin

21

=

−=−
−=



Tutorial: Fundamentals of Switched-Mode Power Converter Design
© 2018 IEEE 
International Solid-State Circuits Conference 14 of 70

Boost Converter in CCM
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 The voltage conversion ratio can be obtained using Volt-Second 
Balance.

 Note: Vl in state 1 (φ1) = Vin and Vl in state 2 (φ2) = Vin - Vout
assuming ideal switches and inductor.
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Flyback Converter in CCM

D1
D

V
V

)D1(VDV
)D1(mDm

in

out

outin

21

−
−=

−−=
−=

 The voltage conversion ratio can be obtained using Volt-Second 
Balance.

 Note: Vl in state 1 (φ1) = Vin and Vl in state 2 (Ts- φ1) = Vout
assuming ideal switch, diode and inductor.
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Discontinuous Conduction Mode

221 DmDm =

 When the output current keeps on decreasing, the inductor current would 
fall to zero and the converter operates in the discontinuous conduction 
mode (DCM) with a third state S3.

 The volt-second balance becomes

S1: nTs<t<(n+D)Ts, switch is on & IL
increasing
S2: (n+D)Ts<t<(n+D+D2)Ts, switch is off & IL
decreasing 
S3: (n+D+D2)Ts<t<(n+1)Ts, both active and 
passive switches are off, and IL = 0 
Note that D+D2+D3=1

Buck converter example
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Performance Requirements of SMPC Design

 High Power Conversion Efficiency
 Minimize power losses in the power stage

 Small Size (High Power Density) and Low Cost
 Minimize required values of reactive components and off-chip components 

in the power stage

 High Output Voltage Accuracy
 Improve both line and load regulations
 Minimize output voltage ripple relative to the DC output voltage

 Fast Transient Response
 Improve the speed of the controller
 Increase the slew rate of the inductor current
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Asynchronous vs Synchronous Power Stage

 Diode provides a current path 
when the pMOS switch is off.

 Diode voltage drop leads to large 
conduction power loss, unsuitable 
for low output-voltage conditions.

 If Vin=3.6V, Vout=1.5V, Vd=0.7V, 
then ηmax=78.6%!

dout

out
max V)D1(V

V
−+

=η
 Power nMOS offers much smaller 

voltage drop than Vd.
 Dead-time is needed for gate 

driving signals of pMOS and nMOS
to avoid short-circuit power loss.
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Losses in Synchronous Buck Converters
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Example on Conduction Loss Calculation
 Conduction loss is dominated by on-resistance of power FETs and DC 

resistance (DCR) of the inductor.
 Conduction loss of high-side (HS) power switch

 Conduction loss of low-side (LS) power switch

 Conduction loss of inductor DCR
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Loss Summary of Synchronous Buck Converter

Conduction 
Losses

Power FET on-
resistance Rdson

Inductor Winding 
Resistance

Dynamic 
Losses

Power FET Gate Drive 
Losses

Capacitive Switching 
Loss

Static Loss Converter quiescent 
current
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Efficiency Enhancement: PWM-PFM Control

 Dynamic losses (switching and gate-drive losses) become dominant in the light-
load condition.

 Reducing switching activities of power transistors in light loads improves 
converter light-load power efficiency.
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Efficiency Enhancement: DCM Operation

 DCM enables lower frequency operation, reducing the switching power loss.
H. Lee et. al., TCAS-II, Mar. 2010, pp. 238-242.



Tutorial: Fundamentals of Switched-Mode Power Converter Design
© 2018 IEEE 
International Solid-State Circuits Conference 24 of 70

Efficiency Enhancement: Width Switching

 Only smaller-size power transistors (Msp, Msn) 
are used to reduce the gate drive loss at the 
light load condition.

 All power transistors (Msp, Msn, Mlp, Mln) are 
used for the full load condition.

 Potential cross conduction of large and small 
power transistors may occur during switching 
if buffers are not designed properly.

D. Park et. al., TCAS-II, Aug. 2014, pp. 599-603.
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Efficiency Enhancement: Gate Swing Modulation

 This strategy improves light-load efficiency with the fixed switching frequency.
 Control the gate swing of power transistors via modulating the turn-on time of 

M4 and M5 using a voltage-controlled RC delay

M. Mulligan et. al., PE Letters, 
Mar. 2005, pp. 24-29.
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Buck Converter: Inductance Selection
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where r is the current ripple ratio of 0.25 – 0.5
Io,max: maximum output current

 For CCM operation,

 For given Vin and Vout, the inductance is determined by the inductor current ripple 
and switching frequency fs. Higher switching frequency fs reduces the required L.
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Buck Converter: Output Capacitor Selection

 The output capacitance C is determined by the output ripple and switching 
frequency

 Higher switching frequency reduces the required value of C for a given ΔVout.

voltage ripple output:V   ,
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Outline

 SMPC Basics and Design Considerations

 Control Methodologies and Design Issues
 Voltage-mode PWM and compensator design
 Current-mode PWM and compensator design
 Current sensor designs
 Gate driver designs
 Hysteretic control

 Advanced Topic
 Three-Level DC-DC Converter
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PWM – Voltage-Mode Control (VMC)

loop stability and 
transient response

duty ratio 
modulation
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VMC – PWM Generator

 Duty ratio (D) is defined by the crossing of compensator output Vb and the 
fixed ramp signal Vramp: larger Vb leads to larger D.



Tutorial: Fundamentals of Switched-Mode Power Converter Design
© 2018 IEEE 
International Solid-State Circuits Conference 31 of 70

VMC – Loop Gain T(s) (1)
 Loop gain T(s)
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VMC – Traditional Dominant Pole Compensation

 High Q factor of the complex poles limits the unity-gain frequency of T(s), 
thereby degrading the converter transient response.

 Worst-case stability (minimum gain margin) occurs at the maximum Vin and 
the minimum Io due to largest Q value of the complex poles.



Tutorial: Fundamentals of Switched-Mode Power Converter Design
© 2018 IEEE 
International Solid-State Circuits Conference 33 of 70

VMC – Type III Compensator (1)

 2 LHP zeros are generated in A(s) to compensate for the negative phase shift of 
the complex poles in C(s).

 This compensator however requires large area for passive components.
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VMC – Type III Compensator (2)

 Differential difference amplifier is used to realize the Type-III compensator for 
reducing the required number of passive components.

L. Chen et. al., ISSCC, Feb. 2014, pp. 84-85.
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PWM – Current-Mode Control (CMC)

 Both inductor current and output 
voltage information are used.

 The converter has inherent pulse-by-
pulse current limiting and soft start.

 Sensed inductor current is used as a 
ramp to define D by replacing the 
fixed voltage ramp.

C. F. Lee et. al., JSSC, Jan. 2004, 
pp. 3-14.
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CMC – Sub-Harmonic Oscillations (1)

 Current-mode converters will undergo sub-harmonic oscillation (at fs/2, fs/4, etc.) 
whenever D > 0.5.

 For D < 0.5, m1 > m2, the perturbation decreases with (ΔiLRf)2 < (ΔiLRf)1.
 For D > 0.5, m1 < m2, the perturbation increases with (ΔiLRf)2 > (ΔiLRf)1.
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CMC – Sub-Harmonic Oscillations (2)

Compensation 
ramp: slope mc

 A compensation ramp with slope mc ≥ m2,max/2 = Vout,max/2L, can suppress the 
oscillation under D>0.5, where m2 is the slope of the IL during (1-D)Ts.

 The compensation ramp can be realized by the voltage ramp generator.
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Compensation Ramp in Current-Mode Controller

Compensation 
ramp

 The compensation ramp with slope mc is added together with the sensed 
inductor current signal at the input of PWM generator.
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CMC – Loop Gain T(s)

 Two separate poles ωa and ωt1 in T(s) are easier to compensate compared to the 
complex poles in the voltage-mode counterpart.
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CMC – Compensator Design

 Compensator LHP zero (zc) cancels negative phase shift of p1 (ωa) in T(s) by 
positioning zc at p1.

 Dominant pole pc of T(s) is given as 1/RocCb from the compensator.
 UGF of T(s) is smaller than ωt1 and can reach 4 or 5 times less than fs.
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Inductor Current Sensing

 Speed of inductor current sensing can limit the maximum switching 
frequency (fs,max) and duty ratio range of the converter.

 CMC converter can function properly if the delay (td) of the current sensor 
is smaller than Dmin * 1/fs,max.

 Power dissipation of the current sensor should be minimized.
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Sensing Resistor

 Sensing resistor Rsen in series with the inductor to provide entire inductor profile.
 If Rsen is too small, inductor current cannot be detected in light-load condition.
 If Rsen is too large (e.g. 500mΩ), conduction loss of Rsen might significantly increase 

the total power loss.
 If iL,rms = 1A, the loss due to Rsen = 500mW that is not suitable for low-power applications.
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Switch Current Sensing for HS Power pMOS

 Sensing transistor Mps tracks current through high-side power FET MP during state 1.
 Since IS << IL, the switch current sensing is “lossless” compared to the load current.
 The speed of the current sensing is typically limited by the non-dominant pole of the 

negative feedback loop.

K : 1

K>>1 and is commonly selected as 1000

Operation in state DTs

s
L

s
p
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For peak current control in Buck converters
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Switch Current Sensing for LS Power nMOS

 Low-side sensing: sensing transistor M5 tracks current through low-side power nFET
Mn during state 1 for the peak current control in Boost converters.

D. Ma et. al., JSSC, Jan. 2003, 
pp. 89-100.
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Low-Voltage Switch Current Sensing

 Low-voltage low-side current sensor relies on using a low-voltage error 
amplifier for obtaining scaled-down sensed current through power nFET MN.

D. Park et. al., TCAS-II, Aug. 2014, pp. 599-603.

Low-voltage current sensor for Boost converters LV error amplifier

Sensing 
transistor
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High-Speed Switch Current Sensing

 Dynamically-biased shunt 
feedback uses 7 additional 
transistors to push the non-
dominant pole in the feedback 
loop to a higher frequency.

 The UGF of the feedback loop 
is increased, thereby 
minimizing the sensing delay 
for higher fs.

M. Du et. al., TCAS-I, Oct. 2010, pp. 
2804-2814.
M. Du et. al., JSSC, Aug. 2011, pp. 
1928-1939.
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Filter-Based Current Sensing

 Capacitor voltage VC of a lossless low-pass filter formed by RS and CS in parallel 
with the inductor provides inductor current information.

 This current sensor provides high-speed current sensing and is suitable for high-
frequency (of over 10MHz) DC-DC converters.
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F. Su et. al., ISSCC, Feb. 
2009, pp. 446-447.
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Gate Driver for HS Power pMOS

 Gate driver structure: dead-time control and digital buffers (for LV synchronous 
converters with a high-side power pMOS and a low-side nMOS).

 Dead-time avoids simultaneous conduction of power transistors during switching 
transitions, removing the short-circuit loss.
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Gate Driver for High-Side Power nMOS (1)

 With a high-side power nMOS, the gate driver needs to have an additional 
level shifter and bootstrap circuit.  

 Bootstrap supply VBOOT (= VIN + VDD) is realized by a diode and a capacitor. 

MUN and MLN are HV 
FETs if Vin >> VDD
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Gate Driver for High-Side Power nMOS (2)

Z. Liu et. al., JSSC, Sep. 
2015, pp. 2174-2187.

Level Shifter Design

Z. Liu et. al., JSSC, Jun. 
2015, pp. 1463-1477.
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Hysteretic Control

 Compared to PWM control, hysteretic control improves the converter load transient 
response without using the bandwidth-limited error amplifier in the controller.

 Cons: large output ripple and unpredictable output noise spectrum with variable 
switching frequency

Hysteretic 
comparator
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Current-Mode Hysteretic Control

 Current-mode hysteretic control (CMHC) offers smaller output ripple but slower 
transient response compared to voltage-mode counterpart.

 Quasi-current-mode hysteretic control improves transient response and reduces 
the required current sensing capacitance CSEN compared to CMHC.

S. H. Lee et. al., ISSCC, Feb. 2015, pp. 214-215.
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Outline

 SMPC Basics and Design Considerations

 Control Methodologies and Design Issues
 Voltage-mode PWM and compensator design
 Current-mode PWM and compensator design
 Current sensor designs
 Gate driver designs
 Hysteretic control

 Advanced Topic
 Three-Level DC-DC Converter
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Three-Level DC-DC Converter (1)

 A three-level converter has four power FETs (M1 – M4) and a flying capacitor Cf
connected between nodes A and C with its voltage Vcf = 0.5Vi in the steady state.
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Three-Level DC-DC Converter (2)

 The frequency of both inductor current and output voltage is 2 times larger 
than gate drive signals.

 The voltage swing at each switching node is only Vi/2 if Vcf = Vi/2.
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Three-Level DC-DC Converter (3)

 Compared to a two-level converter, the three-level converter
 reduces the required inductor value by 4 times
 reduces the required output capacitor value by 2 times
 reduces the voltage stress across each power switch by 2 times  smaller-size lower 

voltage rating power FETs can be used  suitable for HV applications
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Voltage across the Flying Capacitor

∆Vcf in charging phase

∆Vcf in discharging phase

∆Vcf in one period TO
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Flying Capacitor Balancing

 The unbalanced behavior of the flying capacitor would damage the power FETs.
 Comparator-based balancing scheme with two external reference voltages can 

force Vcf close to Vi/2, and it is suitable for low-voltage applications.

Flying capacitor unbalanced Control of flying capacitor balancing
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Flying Capacitor Self Balancing (1)

 Self-balancing means that both flying 
capacitor balancing and output voltage 
regulation are achieved simultaneously 
by the same controller.

 By regulating the average inductor 
current, both Vcf and Vo would be 
regulated automatically. 

J. Xue et. al., ISSCC, Feb. 2016, pp. 226-227.
J. Xue et. al., JSSC, Dec. 2016, pp. 2854-
2866.
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Flying Capacitor Self Balancing (2)

 Perturbation (Vcf < 0.5Vi)

 ΔVcf continues to decrease until it equals 0  the flying capacitor voltage is 
regulated at Vcf = 0.5Vi.

( ) 0
C

TDIIVVV
f

O2L1L
dis_cfch_cfcf =××=ΔΔ=Δ --

 Perturbation (Vcf > 0.5Vi)
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Loop Gain of Three-Level Converters

LCs
R
Ls1

1
V
V)s(Ab)s(T

2M

in

++
⋅⋅⋅=

 The loop gain T(s) of the three-level converter

Note: b is the feedback resistor ratio
A(s) is the transfer function of the compensator
VM is the amplitude of the ramp signal

 The loop gain of the three-level converter is the same as that of two-
level converter.

 Same controller type as the two-level converter can be used for the 
three-level converter.
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Gate Driver for Three-Level Converters

 Driver structure: 3 level 
shifters, 4 voltage buffers, 3 
sets of bootstrap circuitry, and 
a dead-time controller

 In LV applications, open-loop 
fixed dead-time is used to 
remove the shoot-through 
current of power FETs and VSW
sensor is not necessary.

L. Cong et. al., ECCE, Sep. 2015, pp. 1479-
1484.
J. Xue et. al., APEC, Mar. 2015, pp. 451-454.
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Example: 100V Three-Level DC-DC Converter (1) 

 In high-input applications, all power FETs can realize ZVS during turn-on with 
negative inductor current using a small-size inductor.

J. Xue et. al., ISSCC, Feb. 2016, pp. 
226-227.
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Example: 100V Three-Level DC-DC Converter (2) 

 The three-level ZVS converter has the lowest power loss under high inputs
 13 times reduction compared to the two-level hard switching converter at Vi = 100V
 2.6 times reduction compared to the two-level ZVS converter at Vi = 100V

J. Xue et. al., JSSC, Dec. 2016, pp. 
2854-2866.
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Example: 100V Three-Level DC-DC Converter (3) 
TI LM5007 This Work

Process N. A. 0.5-µm 120-V CMOS

Topology Two-Level, Asyn. Three-Level, Syn.

Power FETs Stress Vi 0.5Vi (Vi = 26 V – 100 V)

Input Voltage (V) 12 – 75 12 – 100

Output Voltage (V) 10 10

Output Power (W) 4 5

Duty Ratio 0.13 – 0.83 0.11 – 0.83

Capacitor Balancing N. A. Yes, Self Balancing

Switching Operation Hard ZVS

Frequency (MHz) ~ 0.4 ~2

Frequency Variation ± 3.8% ± 0.55%

L 100 µH 1.5 µH

C 15 µF (Co) 4.7 µF (Co) + 1 µF (Cf)

Peak Power Efficiency
(Frequency)

86% @ Vi = 50 V,
83% @ Vi = 70 V

(0.4 MHz)

90% @ Vi = 48 V,
86% @ Vi = 72 V,

83% @ Vi = 100 V,
(2 MHz)

0.5-µm 120-V AMS CMOS process
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Summary

 Switched-mode power converters are the most popular DC-DC 
converters for high-efficiency voltage conversion
 Power topology characteristics with CCM vs DCM operation
 Power loss analysis and efficiency-enhancement techniques
 Passive selection strategy
 Voltage-mode PWM control and its frequency compensation strategy
 Current-mode PWM control and its frequency compensation strategy
 Current sensor design
 Hysteretic control

 Advanced material: Three-level DC-DC converter
 Topology characteristics
 Flying capacitor balancing and gate driver structure
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Related Papers in ISSCC 2018

 High-voltage DC-DC Converter: Paper 24.1
L. Cong, H. Lee, “A 2MHz 150-to-400V Input Isolated DC-DC Bus Converter with 
Monolithic Slope-Sensing ZVS Detection Achieving 13ns Turn-on Delay and 1.6W 
Power Saving,” ISSCC 2018.

 Low Voltage Ripple Step-Up Converter: Paper 27.5
S. U. Shin, et. al., “A 95.2% Efficiency Dual-Path DC-DC Step-Up Converter with 
Continuous Output Current Delivery and Low Voltage Ripple,” ISSCC 2018.
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