ADC-Based Serial Links: Design and Analysis

Samuel Palermospalermo@tamu.edu Analog & Mixed-Signal Center Texas A&M University

We Need More Data Bandwidth

Electrical Channel Bandwidth Limitations

56Gb/s Legacy Backplane Channel

 \Box Motivates more spectrally-efficient modulation schemes (PAM4)

Electrical channel bandwidth has not scaled to

match I/O bandwidth demands and the CMOS

technology speed

 \Box

ADC-Based Receiver Front Ends

- \Box ADC-based receivers perform ISI cancellation in digital domain, allowing for flexible advanced equalization and symbol detection
- \Box Well suited for more spectrally-efficient modulation schemes (PAM4)
- \Box Benefit from improved area and power with CMOS scaling
- \Box Power dissipation of both the ADC and digital equalizer is a major issue

Outline

ADC Resolution Requirements & Topologies

- □ Key ADC Circuits
- □ ADC Calibration Techniques
- □ Digital Equalization
- □ Analog Front-End

□ Conclusion

ADC Resolution Requirements

- \Box The required ADC resolution is a function of
	- an
Ma Channel loss
	- an
Ma Amount of TX and RX front-end analog equalization
	- an
Ma Modulation scheme
	- Required BER (FEC)
- \Box Quantization noise must be accurately modeled to select the necessary ADC resolution

Impact of FEC on RX Front-End Raw BER

[Frans JSSC 2017]

Quantization Distortion Modeling

Scaled noise PDF's

- \Box Quantization noise is shaped by RX-side digital FFE
- \Box Allows for direct convolution w/ other noise/distortion PDFs
	- Assuming small INL/DNL and front-end non-linearity

56Gb/s PAM4 Example

- \Box High-loss channel requires 3-4b ENOB for FEC BER (3e-4) and >5b ENOB to achieve a 1e-12 raw BER
- П Low-loss channel can achieve 1e-12 raw BER with only 3b ENOB
- \Box Motivates configurable resolution ADCs

Key Simulator Settings

- 3-tap TX w/ 1Vpp swing
- CTLE/AGC FE w/ 7.4dB peaking and 16GHz BW
- 400mV ADC FSR
- Digital 14-tap FFE & 1-tap DFE
- 3mV $_{\sf rms}$ ADC input noise
- RJ=300fs $_{\rm rms}$
- No TI effects (more later)

Recent ADC-Based XCVR/RX

Some Observations

- \Box PAM2 systems are generally implementing 5-6b ADCs and achieving close to 4-4.5b ENOB at Nyquist
	- A mixture of flash and SAR architectures are utilized
- \Box PAM2 digital equalization enables robust implementation of RX-side FFE and multiple DFE taps
- \Box PAM4 systems are generally implementing 7-8b ADCs and achieving close to 5-6b ENOB at Nyquist
	- SAR architectures are well suited for this resolution
- \Box PAM4 digital equalization employs large tap count FFEs to effectively cancel residual ISI, but few DFE taps due to complexity

Common ADC Topologies

Flash ADC

- \Box Comparators at each reference level allow for simultaneous parallel conversion
- \square Single cycle operation allows for high speeds
	- Typical interleave factors of 4-8
- □ Main downside is large comparator count
	- Rectifying flash architectures can reduce this
- \Box Flash ADC is a reasonable choice for PAM2, but resolution is a bit low for PAM4

Binary (Multi-Bit) Search ADC

- \Box Binary (multi-bit) search ADCs combine desirable properties of flash & SAR ADCs
- \Box Efficient binary search algorithm allows only necessary comparator evaluation
- \Box Avoids the DAC settling and logic delay present in SAR ADCs, but slower than flash due to serial comparator evaluation
- □ Good choice for PAM2 applications, area may be a bit high for PAM4 applications

SAR ADC

- \Box Performs a binary search conversion over multiple clock cycles
- \square Simplest implementations only require one comparator per unit ADC
- □ Slower unit ADC relative to flash/binary search
	- Typical interleave factors of 32-64
- \Box Excellent choice for 6-8b resolution to support both PAM2 and PAM4
- \Box The dominant architecture for PAM4 ADC-based receivers

Pipeline SAR ADC

- □ Looking forward, pipeline SAR architectures are attractive in order to further push sample rates $(100+Gb/s)$
- \square Pipelining allows for higher sample rate and fewer unit ADCs
- \Box Inter-stage gain block can reduce impact of comparator noise to allow for higher resolution **and the components [Kull ISSCC 2017]**

State-of-the-Art ADC Performance

 \Box SAR is the most popular architecture and provides best power efficiency for $>$ 10GS/s 6~8b ADC design

Time-Interleaved ADCs

П Wireline ADCs are time-interleaved to achieve high sample rates \Box As the SAR ADC is the dominant wireline ADC architecture, we will walk through it's key circuits

Outline

□ ADC Resolution Requirements & Topologies

- □ Key ADC Circuits
- □ ADC Calibration Techniques
- □ Digital Equalization
- □ Analog Front-End

□ Conclusion

Time-Interleaved ADCs

 \Box Because we can only generate a relatively small number of low-jitter, low-skew clock phases (4-16), input sampling is performed in 2 stages

 \Box The input T/H must track and sample (hold) the full-bandwidth input signal for further sampling to the unit ADCs

Input T/H

Hold-mode input feedthrough

Signal-Dependent On-Resistance & Sample Point

During track-mode, the MOS operates in triode

$$
I_D = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}
$$

$$
R_{ON} \approx \left[\frac{dI_{D(triode)}}{dV_{DS}} \Big|_{V_{DS} \to 0} \right]^{-1} = \frac{1}{\mu C_{OX} \frac{W}{L} (V_{CLK} - V_{IN} - V_{TH})}
$$

$$
V_{\text{in}} \longrightarrow VDD
$$
\n
$$
V_{\text{in}} \longrightarrow V_{\text{out}}
$$
\n
$$
V_{\text{GS}} = V_{\text{CLK}} - V_{\text{in}} \longrightarrow V_{\text{out}}
$$
\n
$$
V_{\text{GS}} = V_{\text{CLK}} - V_{\text{in}} \longrightarrow V_{\text{out}}
$$
\n
$$
T_{\text{track}} - \text{Mode}
$$

\Box Issues

- **R**_{ON} is modulated by $\mathsf{V}_{\mathsf{IN}} \rightarrow \mathsf{Distortion}$
- **Signal dependent hold instant, occurs when** $V_{CLK} = V_{IN} + V_{TH}$

Signal-Dependent On-Resistance & Sample Point

The signal is sampled when

$$
V_{CLK} = V_{IN} + V_{TH}
$$

 \square The sampling clock fall time should be much faster than the maximum dV_{IN}/dt to minimize the sampling point mismatch

Bootstrapped Switch

and sampling instant are signal independent

Hold-Mode Feedthrough

□ High-pass feedthrough paths when switch ideally open

$$
\frac{V_{OUT}}{V_{IN}} = \frac{C_{gd}R \cdot s}{(C_{gs} + C_{gd})R \cdot s + 1} \bigg|_{C_s \gg C_{gs,gd}}
$$

- \Box Using a dummy path to generate an opposite feedthrough for cancellation
- \Box Make sure to place a proper impedance on the dummy transistor gate

How Much Track Time?

 \Box The initial transient response (yellow) goes to zero quickly with proper N=t/RC

How Much Track Time?

- Ш The initial transient response error can be ignored by an 8 bit system when N>7
- \Box It is unrealistic to lower the steady-state error by dramatically decreasing RC
	- $\overline{}$ Often compensated by digital equalizer
	- $\overline{}$ $N=12$ gives \sim 0.7x attenuation with a Nyquist input and a common 8-way first-line interleave factor

Time-Interleaved SAR ADC: S/H Buffer & Second-Line Switch

- \Box Active buffer isolates ADC loading from the bootstrap switch
- П Second-line switch (S/H) output should settle with ϵ <LSB/2
- П As this settling is a function of both the buffer bandwidth and switch time constant, lets consider them together

S/H Buffer & Second-Line Switch

 \Box \Box The settling time of V_{OUT} is related both to the buffer BW and switch τ

П \Box The worst case is when $\mathsf{V}_{\mathsf{OUT}}$ settles from '0' to max amplitude with a Nyquist input \Box □ Note that C_P can be larger than C_{DAC} due to long routing from buffer to unit-ADCs

S/H Buffer & Second-Line Switch: 64GS/s Example

 \Box A smaller BW=32GHz allows lower source follower power, but need smaller $\tau \approx 5$ ps

Time-Interleaving Sampling Architectures

- \Box D Direct sampling has better BW due to the shortest path from V_{IN} to the C_{DAC} . But the sub-sampling time (second-line SW hold time) is just 4/fs (50% duty cycle).
- \Box Serialized SW (ϕ_1 , ϕ_{11}) lowers the BW of the inline demux arch, but allows for an increased hold time and ^a relaxed buffer design
	- $\overline{}$ Note, this often requires ^a higher sampling clock, which also decreases sampling time

Time-Interleaved SAR ADC: Unit ADC

 \Box Unit SAR ADC speed sets the interleave factor

- \Box It's noise and linearity limit the achievable ADC ENOB
- П Mismatches between the unit ADCs (and the preceding individual T/Hs and S/H buffers) will need to be calibrated

Unit SAR ADC: Critical Timing Path

 \Box SAR ADC consists of S/H, DAC, comparator and SAR logic

 \Box The conversion speed of SAR ADCs depends on the delay from comparator, logic and DAC in the critical timing path

 \Box Various techniques to reduce the delay for faster SAR ADC speed

Unit SAR ADC: Advanced Techniques

DAC

 \Box DAC generates residue signals by subtracting binary weighted reference from input

 \Box Capacitive DAC is the most popular DAC structure due to low power consumption

DAC Implementation

 \Box Minimize cap size for medium resolution SAR ($6 \sim 8$ bit)

□ Minimum unit cap size limited by matching requirement and KT/C noise (noise usually dominated by front-end and comparator)

Comparator

Dynamic Comparator

\Box Dynamic latch specs

- Noise
- an
Ma **Offset**
- an
Ma Metastability

Comparator Noise

 Device noise causes random decisions even with zero input signal

 Noise variance can be found by fitting output to a Gaussian CDF as the input is swept and transient noise is enabled

 Noise can also be simulated with PSS+PAC+PNOISE, but requires post processing to find ISF from sideband transfer function [Kim TCAS-I 2009]

Comparator Offset

 \Box The input referred offset is primarily a function of Vth mismatch and a weaker function of β (mobility) mismatch

$$
\sigma_{V_t} = \frac{A_{V_t}}{\sqrt{WL}}, \quad \sigma_{\Delta\beta/\beta} = \frac{A_{\beta}}{\sqrt{WL}}
$$

- \Box To reduce input offset 2x, we need to increase area 4x
- \Box Not practical due to excessive area and power consumption
- \Box Offset correction necessary to efficiently achieve good sensitivity

Comparator Metastability

Synchronous SAR Logic

- \Box Need an internal clk at N+1 times sampling frequency
- □ Maximum frequency limited by worst case stage delay

$$
f_S = \frac{1}{(N+1)\max_i(t_{comp,i} + t_{logic,i} + t_{DAC,i})}
$$

Asynchronous SAR Logic

- \Box Comparator triggered in a ripple fashion, no need for $(N+1)$ fs
- □ Maximum frequency speeded up by reducing the non-worst-case stage delay

$$
f_S = \frac{1}{T_{Track} + \sum_{i=1}^{N} (t_{comp,i} + t_{logic,i} + t_{DAC,i})}
$$

Metastability Error Rate

- \Box Metastability error rate can be improved with a faster comparator
- □ Metastability error could be propagated through digital FFE and impact RX BER performance even if it meets the ADC SNDR specification

Outline

□ ADC Resolution Requirements & Topologies

- □ Key ADC Circuits
- □ ADC Calibration Techniques
- □ Digital Equalization
- □ Analog Front-End

□ Conclusion

Time-Interleaving Errors

 \Box Mismatches between time-interleaving channels degrade performance

- □ Modelled as an effective pulse response from each time-interleaved ADC channel, including offset, gain, bandwidth, and skew effects
- \Box Both analog and digital calibration techniques are employed to correct these issues

Offset Errors

 \Box Caused by device mismatches in T/Hs, DACs, and comparators

Offset Error Correction

- \Box Most commonly corrected in the analog domain in the comparators
	- $\overline{}$ Current-mode/Capacitive DACs
	- $\overline{}$ Parallel diff pair driven by ref voltage
- \Box Common foreground calibration scheme involves shorting inputs and adjusting offset DACs until 50% output 1/0 dynamic range **Background Offset**

- \Box Background calibration includes monitoring the average digital output or adding extra ADC correction cycles
- \Box Can also be corrected in the digital domain with the loss of some dynamic range

Demux &

Memory Async logic

state machine

Dec detect Clock logic

Calibration w/ Extra SAR Cycle

[Kull JSSC 2013]

ck₂ ck_{av} ck_{res} 16

Cal

Gain Errors

 \Box Caused by device mismatches in T/Hs, DACs, and comparators

Gain Error Correction

- \Box Effective background calibration involves \Box $\overline{}$ \Box digitally monitoring the ADC peak output and correcting it to match the FSR
- П Flash ADC
	- $\overline{}$ Adjustment of comparator thresholds
	- $\overline{}$ Programmable gain amplifier in sub-ADC

alibrated Ioad **Programmable (From Gain Gain Amplifier Cal DAC)** V_{master} d_{sw} wv⊷w V_{ref} $\operatorname{\psi C_{ref}}$ **[Kull JSSC 2013] [Cao JSSC 2010] CMFB** from ADC ref. ladder

SAR ADC

- Adjusting capacitive DAC reference voltage
- $\overline{}$ Introducing additional programmable capacitors
- \Box Further fine gain calibration can also be implemented in the DSP

Unit SAR DAC Programmable Reference

 $3/4$ V_{ref}

 $1/2$ V_{ref}

 $1/4$ V_{ref}

 R

Bandwidth Errors

Bandwidth Error Correction

- \Box Simply design the signal path with sufficient bandwidth such that any variations don't translate into major differences in the pulse response
	- $\overline{}$ Shunt peaking PGAs

- \Box Digital domain compensation treats each sub-ADC as a unique channel
	- $\overline{}$ Per-slice independent adaptation of FFE and DFE taps

μC

Recovered

Bits

DFE

Skew Errors

 \Box Caused by device mismatches and layout asymmetries in the multiphase clock generation and distribution to the input track-and-holds

Skew Error Correction

- □ Calibrated with per-phase digitally-adjustable delay cells in the clock distribution buffers or phase interpolators with independent phase offset codes
- \Box Similar to bandwidth errors, skew errors will cause each sub-ADC to generate a pulse response with a slightly different ISI characteristic
- \Box Efficient approach to detect skew errors is to monitor the differences in the converged tap coefficients of a per-slice adaptive equalizer **[Cai JSSC 2017]**

Outline

□ ADC Resolution Requirements & Topologies

- □ Key ADC Circuits
- □ ADC Calibration Techniques
- □ Digital Equalization
- □ Analog Front-End

□ Conclusion

Feed-Forward Equalizer

- \Box Symbol by symbol linear equalizer
- □ Parallel implementation often matches or exceeds the ADC time-interleaving factor
- \Box Timing constraints can be easily met through pipelining
- \Box FFE power efficiency can be improved through several techniques such as
	- $\overline{}$ Power supply scaling
	- $\overline{}$ Employing CSD representation for taps
	- $\overline{}$ Tapering coefficient range for taps far from main tap
- \Box FFE architecture is independent of modulation format

supply level [Toifl ESSCIRC 2014]

Decision Feedback Equalizer

- \Box Non-linear equalizer that cancels post-cursor ISI
- \Box Conceptual full rate implementation has all the summers, 1 multiplier and 1 comparator in the 1-UI critical path
- \Box Loop critical path delay in the full rate implementation is significantly longer than the iteration bound $(1*(\text{summer} + \text{multiplier} + \text{slice}) / 1 \text{UI})$

- \Box DFE often implemented to have the same number of parallel slices as the preceding FFE
	- \Box Does this effectively solve the critical path issue?

Parallel Slice Decision Feedback Equalizer

- \Box DFEs are implemented with P parallel slices operating with a clock period of P UIs
- \Box This still results in a maximum of P adders in the timing paths for the timing loops
- \Box Even though the clock period increases by a factor of P, the logic delay also effectively increases by the same P factor
- \Box While the parallel implementation brings the loop critical path period much closer to the iteration bound, advanced techniques are necessary to operate at high data rates

Loop-Unrolled DFE

- \Box Loop-unrolling involves precomputing all the possible decision for the current symbol using all possible decisions for the preceding decisions that are part of the DFE
- \Box Results in 2^N precomputed decisions for PAM-2 and 4^N precomputed decisions for PAM-4
- \Box The adder is removed from the loop critical path as the precomputations can be pipelined
- \Box The loop critical path primarily contains 2:1 muxes for PAM-2 and 4:1 muxes for PAM-4

Example: PAM-4 2-tap Loop Unrolled DFE

- \Box $4²$ = 16 decisions are precomputed with a 2-tap loop-unrolled DFE
- \Box The output of the summers is sliced and fed into a 16:1 mux
- П Select lines to the multiplexers come from the two immediately preceding decisions that have been made

Example: Timing Paths for PAM-4 2-tap Loop-Unrolled DFE

- \Box Assuming P is even, each timing loop goes through P 4:1 muxes
- \Box The total loop critical path is P 4:1 muxes, 1 Clk->Q delay, 1 setup time delay and routing delay
- \Box For the Nth tap of the DFE, the timing loop contains $(1 + \left\lfloor \frac{P-1}{N} \right\rfloor) * N$ 4:1 muxes
- \Box For high data rates, further techniques to reduce the number of muxes in the loop critical path becomes necessary

Look-Ahead Multiplexer Loops

 \Box Look-ahead architecture reduces the number of muxes in the loop critical path

In (3) Y_n 's dependency on Y_{n-1} has been removed! (Iteration bound halved)

Look-Ahead Multiplexer Loops

- \Box The look-ahead multiplexor loop comes at the cost of extra muxes \Box
- \Box The feed forward section can be pipelined but the feedback section cannot be
- \Box In case of PAM-2 N tap DFE, with LF way look-ahead the number of 2:1 muxesneed is: $2^N(LF-1) + \sum_{i=1}^N 2^{N-i}$

1-tap PAM-2 4-way look-ahead mux architecture

 In the case of PAM-4, the number of 2:1 muxes needed is:

 $(4^N(LF-1) + \sum_{i=1}^N 4^{N-i}) * 2 * 3$

1-tap PAM-4 4-way look-ahead mux architecture

Example: PAM-4 Look-Ahead Loop Timing Path

- П Select lines of the mux come from decisions made LF-UIs ago where LF is the look-ahead factor
- \Box Input lines of the mux are fed from a bank of lookahead muxes which can be pipelined
- \Box Critical path for Nth DFE tap consists of 1 Clk->Q delay, $(1 + \left\lfloor \frac{P-1}{LF+N-1} \right\rfloor) * N$ 4:1 muxes, 1 setup time and routing delay
	- \Box Approximately divided by the look-ahead factor

Maximum Achievable Data Rate

- \Box For P-parallel path, N-tap DFE if Td is the 4:1 mux delay
- □ DFE timing constraint with no look-ahead must satisfy $P^*U I = (1 + \left[\frac{P-1}{N}\right])^* N^*(T d) + clock uncertainty + 1 \; C l k\text{-}Q \; \; delay + setup \; time$
- П With look-ahead factor LF the constraint is

Complexity

 \Box The 2:1 mux count for different number of DFE taps employing the minimum possible look-ahead factor necessary for that tap number shows the dramatic increase in going from 1 to 3 taps of DFE

Digital DFE Take-Aways

- \Box PAM-4 system unit delay element is a 4:1 mux, as opposed to 2:1 mux for NRZ
	- \mathcal{L}^{max} At the same baud rate makes timing closure much harder than NRZ
- \Box Loop-unrolling and look-ahead techniques can significantly reduce the critical path delay and enable high data rates
- \Box High data rates come at the cost of huge complexity
	- Grows as power of 4 for PAM-4 systems

Outline

□ ADC Resolution Requirements & Topologies

- □ Key ADC Circuits
- □ ADC Calibration Techniques
- □ Digital Equalization
- □ Analog Front-End

□ Conclusion

Analog Front-End (AFE)

AFE Impact on ADC Resolution & Digital FFE Taps

- \Box CTLE peaking allows reduction in digital FFE tap count and strength
- \Box This reduces quantization noise amplification and allows for a lower ENOB

- 3-tap TX w/ 1Vpp swing
- 400mV ADC FSR
- 3mV $_{\sf rms}$ ADC input noise
- RJ=300fs $_{\rm rms}$
- No TI effects

AFE Bandwidth

- bandwidth drops below Nyquist
- \Box This can be partially compensated with additional digital FFE taps

- 3-tap TX w/ 1Vpp swing
- 5b ENOB
- 400mV ADC FSR
- 3mV $_{\rm rms}$ ADC input noise
- RJ=300fs $_{\rm rms}$
- No TI effects

AFE Linearity

- \Box AFE compressive non-linearity degrades performance
- \Box Setting the AFE 1dB compression voltage to $>1.25X$ ADC FSR allows for minimal impact
- \Box Severe degradation as the 1dB compression falls below the ADC FSR

- 3-tap TX w/ 1Vpp swing
- CTLE/AGC FE w/ 7.4dB peaking and 16GHz BW
- 400mV ADC FSR
- Digital 14-tap FFE & 1-tap DFE
- 3mV $_{\rm rms}$ ADC input noise
- RJ=300fs $_{\rm rms}$
- No TI effects

Embedded FFE in ADC

- \Box Partial analog equalization in the form of an FFE filter can be efficiently embedded inside a SAR ADC
- \Box Translates into reduced power and complexity in both the ADC and the digital equalizer

- Same 56Gb/s PAM4 over the 37dB channel
- 3-tap TX w/ 1Vpp swing
- CTLE/AGC FE w/ 7.4dB peaking and 16GHz BW
- 400mV ADC FSR
- Digital 1-tap DFE
- 3mV $_{\sf rms}$ ADC input noise
- RJ=300fs $_{\rm rms}$
- No TI effects (more later)

Unit SAR ADC with Embedded FFE

Both pre- and post-cursor taps have ~33 LSB range and \sim 1.1 LSB resolution

- \Box 3-tap FFE efficiently embedded in the SAR CDAC
- \Box Main trade-off is increased T/H loading (3X)

10Gb/s NRZ ADC-Based RX 65nm CMOS Prototype

- \Box 10GS/s 32-way interleaved SAR ADC with embedded 3-tap FFE
- □ Digital 4-tap FFE and 3-tap loop-unrolled DFE
- \Box Embedded equalization alone is sufficient for the two lowest-loss (21, 25dB) channels
- \Box Additional digital equalization is necessary for the two highest-loss (32, 36dB) channels

Conclusion

- \Box CMOS ADC-based receivers enable powerful digital equalization and symbol detection techniques for high data rate operation over electrical and optical wireline channels
- \Box Time-interleaved ADCs are implemented to achieve the high effective sample rates
	- Calibration is necessary to compensate for channel mismatches
- \Box Digital equalization allows for straight-forward implementation of large-tap digital FFEs, but PAM4 DFEs suffer from large complexity
- □ Analog front-end (CTLE & VGA) is critical to reduce ADC resolution requirements and match the input signal to ADC FSR ■ Must be designed with sufficient bandwidth and linearity

International Solid-State Circuits Conference

Acknowledgement

- □ My graduate students Shengchang Cai, Shiva Kiran, and Yuanming Zhu for assistance in slide preparation
- □ Intel, Semiconductor Research Corporation, and National Science Foundation for funding support

Suggested Papers at ISSCC 2018

- 6.4: A Fully Adaptive 19-to-56Gb/s PAM-4 Wireline Transceiver with a Configurable ADC in 16nm FinFET
- □ 6.5: A 64Gb/s PAM-4 Transceiver Utilizing an Adaptive Threshold ADC in 16nm FinFET
- 22.1: A 24-to-72GS/s 8b Time-Interleaved SAR ADC with 2.0-to-3.3pJ/conversion and >30dB SNDR at Nyquist in 14nm CMOS FinFET

Motivation

 \Box [Cisco Global Cloud Index 2016] (2016). *Cisco Global Cloud Index: Forecast and Methodology*, 2015–2020. [Online]. Available: http://www.cisco.com.

Recent ADC-Based XCVR/RX

- \Box [Frans JSSC 2017] Y. Frans *et al*., "A 56-Gb/s PAM4 Wireline Transceiver Using ^a 32-Way Time-Interleaved SAR ADC in 16-nm FinFET," *IEEE JSSC*, vol. 52, no. 4, pp. 1101-1110, Apr. 2017.
- [Gopalakrishnan ISSCC 2016] K. Gopalakrishnan *et al*., "A 40/50/100Gb/s PAM-4 ethernet transceiver in 28nm CMOS," in *ISSCC Dig. Tech. Papers*, pp. 62-63, Feb. 2016.
- \Box [Cui ISSCC 2016] D. Cui *et al*., "A 320mW 32Gb/s 8b ADC-based PAM-4 analog front-end with programmable gain control and analog peaking in 28nm CMOS," in *ISSCC Dig. Tech. Papers*, pp. 58-59, Feb. 2016.
- \Box [Rylov ISSCC 2016] S. Rylov *et al*., "A 25Gb/s ADC-based serial line receiver in 32nm CMOS SOI," in *ISSCC Dig. Tech. Papers*, pp. 56-57, Feb. 2016.

Recent ADC-Based XCVR/RX (cont.)

- \Box [Shafik JSSC 2016] A. Shafik *et al*., "A 10Gb/s hybrid ADC-based receiver with embedded analog and per-symbol dynamically-enabled digital equalization," *IEEE JSSC*, vol. 51, no. 3, pp. 671–685, Mar. 2016.
- [Zhang JSSC 2015] B. Zhang *et al*., "A 40nm CMOS 195mW/55mW dual-path receiver AFE for multi-standard 8.5-11.5 Gb/s serial links," *IEEE JSSC*, vol. 50, no. 2, pp. 426– 439, Feb. 2015.
- [Cao JSSC 2010] J. Cao *et al*., "A 500 mW ADC-based CMOS AFE with digital calibration for 10 Gb/s serial links over KR-backplane and multimode fiber," *IEEE JSSC*, vol. 45, no. 6, pp. 1172–1185, Jun. 2010.
- [Varzaghani JSSC 2013] A. Varzaghani *et al*., "A 10.3-GS/s, 6-Bit flash ADC for 10G ethernet applications," *IEEE JSSC*, vol. 48, no. 12, pp. 3038-3048, Dec. 2013.

High-Speed ADCs

- \Box [Kull ISSCC 2017] L. Kull *et al*., "A 10b 1.5GS/s Pipelined-SAR ADC with Background Second-Stage Common-Mode Regulation and Offset Calibration in 14nm CMOS FinFET," in *ISSCC Dig. Tech. Papers*, pp. 474-475, Feb. 2017.
- [Kull JSSC 2016] L. Kull *et al*., "Implementation of low-power 6–8b 30–90GS/s timeinterleaved ADCs with optimized input bandwidth in 32 nm CMOS," *IEEE JSSC*, vol. 51, no. 3, pp. 636–648, Mar. 2016.
- [Chen JSSC 2006] S. Chen *et al*., "A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13 um CMOS," *IEEE JSSC*, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
- \Box [Jiang JSSC 2012] T. Jiang *et al*., "A Single-Channel, 1.25-GS/s, 6-bit, 6.08-mW Asynchronous Successive-Approximation ADC With Improved Feedback Delay in 40-nm CMOS," *IEEE JSSC*, vol. 47, no. 10, pp. 2444-2452, Oct. 2012.
- [Cao JSSC 2009] Z. Cao *et al*., "A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13 um CMOS," *IEEE JSSC*, vol. 44, no. 3, pp. 862-873, Mar. 2009.
- \Box [Liu ISSCC 2010] C. Liu *et al*., "A 10b 100MS/s 1.13mW SAR ADC with Binary-Scaled Error Compensation," in *IEEE ISSCC Dig. Tech. Papers*, 2010, pp. 386–387.

High-Speed ADCs (cont.)

- \Box [Kull JSSC 2013] L. Kull *et al*., "A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS," *IEEE JSSC*, vol. 48, no. 12, pp. 3049-3058, Dec. 2013.
- [Cai JSSC 2017] S. Cai *et al*., "A 25GS/s 6b TI binary search ADC with soft-decision selection in 65nm CMOS," in *Proc. IEEE Symp. VLSI Circuits*, pp. C158-C159, June 2015.

ADC Fundamentals & Key Circuits

- \Box [Razavi 1995] B. Razavi, *Principles of Data Conversion System Design*, Wiley-IEEE Press, 1995.
- \Box [Dessouky ELET 1999] M. Dessouky and A. Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched op amp circuits," in *Electronics Letters*, vol. 35, no. 1, pp. 8-10, 7 Jan 1999.
- \Box [Kim TCAS-I 2009] J. Kim *et al*., "Simulation and Analysis of Random Decision Errors in Clocked Comparators," *IEEE TCAS-I: Reg. Papers*, vol. 56, no. 8, pp. 1844-1857, Aug. 2009.

Digital Equalization

- \Box [Toifl ESSCIRC 2014] T. Toifl *et al*., "A 3.5pJ/bit 8-tap-Feed-Forward 8-tap-Decision Feedback Digital Equalizer for 16Gb/s I/Os," *ESSCIRC*, pp. 455-458, Sept. 2014.
- \Box [Parhi TVLSI 2005] K. K. Parhi, "Design of Multigigabit Multiplexer-Loop-Based Decision Feedback Equalizers," *IEEE TVLSI*, vol. 13, no. 4, pp. 489-493, Apr. 2005.