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Serial Link Components

 Transmitter
 Channel
 Receiver

 Clock Recovery (CR) + Data sampler = CDR

Clock Recovery

Transmitter Receiver

Channel
DATATX

10010101100 10010101100
Equalizer

Clock Generator

Data Sampler

RCK

RDATA



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 4 of 91

Serial Link Waveforms
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Serial Link Eye Diagrams

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

PLL CR

Transmitter Receiver

Channel
DATATX

10010101100 10010101100

RCK

RDATA



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 6 of 91

This Tutorial Focus: CDR
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Tutorial Goals

 Map application requirements to CDR specifications
 Optimal architecture choice based on CDR specs.

 Exposure to different CDR architectures
 Develop intuition for design tradeoffs
 Awareness to practical considerations

Applications

Chip-to-chip
Optical
Memory
Mobile

Specifications Architecture

JTOL
JTRAN
JGEN
Power
Area

Linear
Bang-bang

Analog/Digital
Refrence-less

Single-loop
Dual-loop
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Tutorial Roadmap
 Performance metrics

 Basic architectures
 Linear/Bang-bang
 Digital
 Hybrid

 Application-specific CDRs
 Multi-lane chip-to-chip links
 Repeaters for optical links and active cables

 Summary
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CDR Performance Metrics
 Jitter tolerance (JTOL)
 Jitter generation (JGEN)
 Jitter transfer (JTRAN)

Power

Operating range

Supply noise sensitivity

Scalability

Area

CDR
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Jitter Tolerance (JTOL)

 Maximum tolerable input jitter for a given BER
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JTOL Mask

 Increase data input sinusoidal jitter until BER 
exceeds target

acceptable
range
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Jitter Transfer (JTRAN)
 Amount of jitter attenuation provided by CDR

DIN RCK
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JTRAN Mask

 Modulate data input with sinusoidal jitter and 
measure resulting output jitter

acceptable
range

Slope = -20 dB/decade
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Jitter Generation (JGEN)
 Amount of output jitter when fed with clean data
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Tutorial Roadmap

 Performance metrics

 Basic architectures
 Linear/Bang-bang
 Digital
 Hybrid

 Application-specific CDRs
 Multi-lane chip-to-chip links
 Repeaters for optical links and active cables

 Summary



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 16 of 91

Phase-Locked Loop based CDR

 This WON’T work because:
 Crystal oscillators at TX and RX do not match
 No phase relationship between received data and RCK

 Need: Acquire freq. & phase information from data
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PLL-based CDR

 Phase detector should tolerate missing transitions
 Rest of the building blocks similar to a PLL

 Neg. edge of recovered clock locks to data edge
 Pos. edge samples data in the middle of the eye

RCK

Phase
Detector

Loop
Filter

RDATA

RCK
VCO

DIN



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 18 of 91

Linear (Hogge) Phase Detector[1]

 Error output (DE-DR) is difference of 2 pulses
 Pulse width of DE is proportional to phase error
 Pulse width of DR is fixed and is equal to TRCK/2

 Area under DE-DR is proportional to phase error
 Area is zero when RCK is aligned with DIN
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Hogge PD Waveforms
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Hogge PD Transfer Function
Average Phase Detector Output
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CDR Using Hogge Phase Detector

 Type-II response 
 2 integrators – one in the loop filter and the other is VCO

 Zero static phase offset (ideally)
 CP output should be zero in steady state
 Implies input phase error = 0
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Choosing Loop Parameters
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Jitter Transfer Function
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Linear CDR Drawbacks

 Jitter peaking (large loop filter area)

 Coupled JTRAN and JTOL

 Hogge PD non-idealities
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Jitter Peaking (I)
 Zero in feed-forward path  inevitable peaking 
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Jitter Peaking (II)[2]

 BW = 4MHz, R =1kΩ & 0.1dB peaking, C ~ 3.5nF
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Jitter Tracking
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Jitter Tolerance (JTOL) (I)
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Jitter Tolerance (JTOL) (II)

 JTOL improves w/ better jitter tracking
 Better jitter tracking  wider JTRAN bandwidth!
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Coupled JTRAN/JTOL Behavior

 Both JTRAN and JTOL are governed by ωPH
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Hogge PD Non-idealities: Offset[2]

 FF1 clock-to-Q delay introduces phase offset
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Hogge PD Offset Mitigation[2]

 FF1 clock-to-Q delay introduces phase offset
 FF1 delay compensated by inserting buffer

 TD may not track TCK-Q across supply and temperature
 Generating small well controlled TD is also difficult
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Hogge PD Non-idealities: DDJ[2]

 DE/DR pulses not aligned in time
 “Tri-wave” on VC causes Data Dependent Jitter (DDJ)

 See [2] for modified Hogge PD to mitigate DDJ
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Bang-Bang Phase Detector (I)

 Can we detect phase error from sampled data?

Phase error = 0

Phase error ≠ 0

S2S1 S3

RCK

DIN

S1 and S3 are data samples S2 is edge sample
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Bang-Bang Phase Detector (II)[3]

S2S1 S3
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BBPD Characteristics: w/o Jitter
Average Phase Detector Output
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BBPD Characteristics: w/Jitter (I)[4]
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BBPD Characteristics: w/ Jitter (II)
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Full-rate Bang-Bang CDR

 Type-II response
 Near-zero static phase offset 
 Insensitive to charge-pump non-idealities
 VCO & PD operate at full-rate (FVCO = FDIN)

 Could become a speed bottleneck 
 Solution: Half-rate bang-bang CDR
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Half-rate CDR Waveforms
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Half-Rate Bang-Bang CDR

 Topology same as full-rate architecture
 Same phase detection logic as full-rate

 Requires quadrature VCO
 Lower loop update rate  higher loop latency
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Choosing Loop Parameters[5]

 BBPD makes the loop non-linear
 Cannot use transfer function analysis  
 Loop gain is infinite  unstable in “linear sense”

 Ensure stability by choosing large damping factor
 Relatively independent proportional and integral paths
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Bang-Bang CDR Drawbacks

 Coupled JTRAN and JTOL
 Jitter peaking 
 Large loop filter area

 JGEN caused by limit cycles

 JTRAN dependence on input jitter

Similar to linear CDR
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Steady-State Limit Cycles (I)
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Steady-State Limit Cycles (II)
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Loop Delay Increases JGEN
RCK
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JGEN vs. Bang-Bang Step Size

 As bang-bang step size increases:
 Contribution of PD noise to output noise increases
 Contribution of VCO noise to output noise decreases
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JTRAN Dependence on Jitter

 JTRAN is inversely proportional to input jitter
 Difficult to predict a priori

 Set JTRAN for minimum input jitter condition
 Makes it more susceptible to VCO phase noise
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Tutorial Roadmap

 Performance metrics

 Basic architectures
 Linear/Bang-bang
 Digital
 Hybrid

 Application-specific CDRs
 Multi-lane chip-to-chip links
 Repeaters for optical and active cables

 Summary
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Eliminating Loop Filter Capacitor

 Digital accumulator replaces loop filter capacitor
 Large time constant with small area
 Infinite DC gain  ideal Type-II behavior
 PVT insensitive
 Easy to reconfigure for loop dynamics control 

 Map CP + LF into digital domain directly
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Simple Digital CDR[6]

 Loop filter must operate at data rate

 Need:
 Wide operand high-speed adders
 High speed/resolution Digital to Analog Converter (DAC)

DAC RCK
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KI

z-1
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Accumulator
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Reducing Speed Requirements (I)

 Decimation eases speed requirements

 Lower update rate  increases loop latency
 Loop latency increases dithering jitter

 Observation: Proportional path dominates jitter

DAC RCK
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Reducing Speed Requirements (II)

 Fast proportional path
 Minimize latency  reduce dithering jitter

 High resolution integral path
 Minimize tracking jitter

 Minimal hardware penalty
 Needs only 2-level high-speed PDAC
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Practical Digital CDR

 Loop delay increases integral path dithering jitter
 Reduce gain by dropping lower LSBs

 IDAC implemented using ΔΣ techniques
 Proportional and integral controls summed in VCO
 Area efficient  can be fully integrated
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Digital CDR Drawbacks

 Coupled JTRAN and JTOL
 Jitter peaking 
 Large loop filter area

 JGEN vs bang-bang step size tradeoff
 JTRAN dependence on input jitter

 Sensitive to Consecutive Identical Digits 
(CIDs)

Similar to linear CDR

Similar to 
BB CDR



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 56 of 91

Impact of CIDs[7]

 BBPD output is zero for the duration of CIDs
 CDR operates in open loop

 All benefits of feedback are lost
 Noise, leakage, PVT sensitivity, … 
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All zeros or onesDIN

ΔΦIMAX 

ΔΦRCK,P 

ΔΦRCK,I 

ΔΦPMAX 

T0

JGEN due to CIDs

 CIDs exacerbate frequency quantization error
 Output phase drifts at a rate proportional to freq. error

 Impact on JGEN depends on:
 Number of CIDs (NCID)
 Integral path frequency quantization error (ΔFI)
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Analog vs. Digital CDRs 

 Analog CDR using linear PD
 Well-controlled loop dynamics
 PD non-idealities degrade timing margin/BER
 Large loop filter capacitor

 Digital CDR using bang-bang PD
 Non-linear loop dynamics (JTRAN depends on jitter)
 Bang-bang PD maximizes timing margin
 No large capacitor (small area)

 Can we combine the advantages?
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Hybrid Analog/Digital CDR[8]

 Proportional path sets loop bandwidth (JTRAN)
 Fixed gain leads to linear loop dynamics
 Eliminates phase quantization error

 Digital integral path sets steady state
 Makes it insensitive to linear PD phase offset
 Accumulator filters BBPD quantization error
 Causes ripple on the proportional path
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BBPD M

Digital integral path
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RDATA
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Hybrid CDR JTRAN Characteristics 

0.1 1 2 3 4 5 678 10 20 50
-30

-25

-20

-15

-10

-5

0

Jitter Frequency [MHz]

Ji
tte

r T
ra

ns
fe

r [
dB

]

Bandwidth variation
Bang-Bang: ± 63%
Hybrid CDR: ± 5%

 JTRAN independent of jitter amplitude



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 61 of 91

Tutorial Roadmap

 Performance metrics

 Basic architectures
 Linear/Bang-bang
 Digital
 Hybrid

 Application-specific CDRs
 Multi-lane chip-to-chip links
 Repeaters for optical links and active cables

 Summary
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Multi-lane Chip-to-Chip Links

 Source synchronous clocking is common

 BUT many standards mandate embedded clocking
 Examples: PCIe, XAUI, SATA, etc.
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Multi-Lane CDR Challenges

 Many VCOs & capacitors

 Large area

 Harmonic locking
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Multi-Lane CDR Solution
Digital Phase Accumulator (DPA)
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Digital Phase Accumulator (DPA)

 Oscillators are phase accumulators
 Modulo 2π accumulation

 Mimic oscillator operation
 Explicit phase accumulation
 Infinite phase shifting by modulo accumulation

Oscillator DPA
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2π 

ΦOUT

TPERIOD 2TPERIOD

2π 
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Conceptual DPA Realization

 Digital accumulator mimics phase accumulation
 Rate governed by clock frequency
 Modulo arithmetic maps 2π phase to 0

 DPC generates output phase
 DPC non-idealities directly appear at the output

z-1
DPC ΦOUTDCTRL

Modulo accumulator

DPC: Digital to Phase Converter
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Practical DPA Realization

 DPC implemented using a mux

PFD VCOLF

MPG: Multi Phase Generator

z-1
DCTRL

N

ΦOUT

DPC
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Dual-Loop CDR[9]

 Dual loop: Loop # 1: PLL(MPG), Loop # 2: CDR
 DPA replaces DCO in the CDR
 PLL guarantees frequency locking

BBPD
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N

LOOP # 1: PLL

LOOP # 2: Digital CDR
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Practical Dual-Loop CDR[10]

 Phase interpolator (ΦINT) improves DPA resolution
 Better JGEN

 PI resolution depends on many factors
 Input rise time, input phase spacing, PI BW,…

ΦINT
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Long-Haul Communication

0 1 2 3
 Difficult to achieve error-free operation

DATATX DATARX
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Active Repeaters

 Repeater requirements
 Tolerate large input jitter (high JTOL)
 Filter input jitter (low JTRAN) w/ minimal peaking
 Re-transmit with low jitter (Low JGEN)
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VCO
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RDATA
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How About Conventional CDR?

 Jitter peaking  large loop filter capacitor

 High JTOL  high JTRAN
 Cannot adequately filter i/p jitter  degrades RCK jitter

RCK
VCO

PD/CP
R
C

JTRAN

JTOL
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How to Eliminate Jitter Peaking?
 Main idea: Remove zero in feed-forward path 

Feed-forward across current integrator
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Eliminate Jitter Peaking (I)[11]

Feed-forward across phase integrator (VCO)

No zero in feed-forward path
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Eliminate Jitter Peaking (II)
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CDR w/ No Jitter Peaking

RCK
VCO
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CVCDL

PLL

DLL
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D/PLL CDR Jitter Transfer (I)
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 No jitter peaking if damping factor > 0.707

 JTRAN BW = lower of the 2 pole frequencies

D/PLL CDR Jitter Transfer (II)
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D/PLL CDR Jitter Tolerance (I)



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 80 of 91

D/PLL CDR Jitter Tolerance (II)

 JTOL corner = higher of the 2 pole frequencies
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D/PLL CDR JTRAN vs. JTOL

 Decoupled JTRAN and JTOL
 ωPL sets JTRAN BW
 ωPH sets JTOL corner frequency
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A Practical D/PLL CDR

 Additional frequency-locking loop (FLL)
 Challenges: 

 Frequency detection of random data
 Interaction between FLL and PLL

RCK
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PD/CP
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PLL

DLL

Frequency 
Detector
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CP
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Limited Capture Range

 Symmetric PD transfer characteristic
 Avg. PD output becomes zero w/ frequency error

 PD cannot detect large frequency error 

Average Phase Detector Output

0 π 
2π 

-2π -π ΦError

Sum averages to zero
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Frequency Detectors

 Rotational frequency detector[12-14]

 Quadri-correlator frequency detector[15-16]

 Stochastic reference clock generator[17]

 Miscellaneous FDs
 Strobed linear PD[18]

 Counting BBPD outputs [19]
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Summary

 Understanding of CDR specifications
 What are the important jitter metrics for a given app.?

 Understanding of CDR architectures
 What is the best architecture for a given app.?

 CDR design techniques
 How to choose the loop parameters?

Applications

Chip-to-chip
Optical
Memory
Mobile

Specifications Architecture

JTOL
JTRAN
JGEN
Power
Area

Linear
Bang-bang

Analog/Digital
Refrence-less

Single-loop
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