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Serial Link Components

 Transmitter
 Channel
 Receiver

 Clock Recovery (CR) + Data sampler = CDR
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Serial Link Waveforms
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Serial Link Eye Diagrams
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This Tutorial Focus: CDR
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Tutorial Goals

 Map application requirements to CDR specifications
 Optimal architecture choice based on CDR specs.

 Exposure to different CDR architectures
 Develop intuition for design tradeoffs
 Awareness to practical considerations

Applications

Chip-to-chip
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Memory
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Specifications Architecture
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Tutorial Roadmap
 Performance metrics

 Basic architectures
 Linear/Bang-bang
 Digital
 Hybrid

 Application-specific CDRs
 Multi-lane chip-to-chip links
 Repeaters for optical links and active cables

 Summary
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CDR Performance Metrics
 Jitter tolerance (JTOL)
 Jitter generation (JGEN)
 Jitter transfer (JTRAN)

Power

Operating range

Supply noise sensitivity
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Area
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Jitter Tolerance (JTOL)

 Maximum tolerable input jitter for a given BER
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JTOL Mask

 Increase data input sinusoidal jitter until BER 
exceeds target

acceptable
range
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Jitter Transfer (JTRAN)
 Amount of jitter attenuation provided by CDR
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JTRAN Mask

 Modulate data input with sinusoidal jitter and 
measure resulting output jitter

acceptable
range

Slope = -20 dB/decade
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Jitter Generation (JGEN)
 Amount of output jitter when fed with clean data
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Tutorial Roadmap

 Performance metrics

 Basic architectures
 Linear/Bang-bang
 Digital
 Hybrid

 Application-specific CDRs
 Multi-lane chip-to-chip links
 Repeaters for optical links and active cables

 Summary
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Phase-Locked Loop based CDR

 This WON’T work because:
 Crystal oscillators at TX and RX do not match
 No phase relationship between received data and RCK

 Need: Acquire freq. & phase information from data
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PLL-based CDR

 Phase detector should tolerate missing transitions
 Rest of the building blocks similar to a PLL

 Neg. edge of recovered clock locks to data edge
 Pos. edge samples data in the middle of the eye
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Linear (Hogge) Phase Detector[1]

 Error output (DE-DR) is difference of 2 pulses
 Pulse width of DE is proportional to phase error
 Pulse width of DR is fixed and is equal to TRCK/2

 Area under DE-DR is proportional to phase error
 Area is zero when RCK is aligned with DIN
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Hogge PD Waveforms
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Hogge PD Transfer Function
Average Phase Detector Output
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CDR Using Hogge Phase Detector

 Type-II response 
 2 integrators – one in the loop filter and the other is VCO

 Zero static phase offset (ideally)
 CP output should be zero in steady state
 Implies input phase error = 0
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Choosing Loop Parameters
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Jitter Transfer Function
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Linear CDR Drawbacks

 Jitter peaking (large loop filter area)

 Coupled JTRAN and JTOL

 Hogge PD non-idealities

RCK
VCO

R
C

DE

DR
D QD Q

RDATA

DIN



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 25 of 91

Jitter Peaking (I)
 Zero in feed-forward path  inevitable peaking 
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Jitter Peaking (II)[2]

 BW = 4MHz, R =1kΩ & 0.1dB peaking, C ~ 3.5nF
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Jitter Tracking
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Jitter Tolerance (JTOL) (I)
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Jitter Tolerance (JTOL) (II)

 JTOL improves w/ better jitter tracking
 Better jitter tracking  wider JTRAN bandwidth!
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Coupled JTRAN/JTOL Behavior

 Both JTRAN and JTOL are governed by ωPH
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Hogge PD Non-idealities: Offset[2]

 FF1 clock-to-Q delay introduces phase offset
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Hogge PD Offset Mitigation[2]

 FF1 clock-to-Q delay introduces phase offset
 FF1 delay compensated by inserting buffer

 TD may not track TCK-Q across supply and temperature
 Generating small well controlled TD is also difficult

DE
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Hogge PD Non-idealities: DDJ[2]

 DE/DR pulses not aligned in time
 “Tri-wave” on VC causes Data Dependent Jitter (DDJ)

 See [2] for modified Hogge PD to mitigate DDJ
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Bang-Bang Phase Detector (I)

 Can we detect phase error from sampled data?

Phase error = 0

Phase error ≠ 0

S2S1 S3

RCK

DIN

S1 and S3 are data samples S2 is edge sample

S2S1 S3 S2

RCK
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Bang-Bang Phase Detector (II)[3]

S2S1 S3
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LATE (L)
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Phase Detection Logic



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 36 of 91

BBPD Characteristics: w/o Jitter
Average Phase Detector Output
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BBPD Characteristics: w/Jitter (I)[4]
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BBPD Characteristics: w/ Jitter (II)
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Full-rate Bang-Bang CDR

 Type-II response
 Near-zero static phase offset 
 Insensitive to charge-pump non-idealities
 VCO & PD operate at full-rate (FVCO = FDIN)

 Could become a speed bottleneck 
 Solution: Half-rate bang-bang CDR
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Half-rate CDR Waveforms
E0 E1 E2 E3D0 D1 D2
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Half-Rate Bang-Bang CDR

 Topology same as full-rate architecture
 Same phase detection logic as full-rate

 Requires quadrature VCO
 Lower loop update rate  higher loop latency
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Choosing Loop Parameters[5]

 BBPD makes the loop non-linear
 Cannot use transfer function analysis  
 Loop gain is infinite  unstable in “linear sense”

 Ensure stability by choosing large damping factor
 Relatively independent proportional and integral paths
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Bang-Bang CDR Drawbacks

 Coupled JTRAN and JTOL
 Jitter peaking 
 Large loop filter area

 JGEN caused by limit cycles

 JTRAN dependence on input jitter

Similar to linear CDR
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Steady-State Limit Cycles (I)
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Steady-State Limit Cycles (II)
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Loop Delay Increases JGEN
RCK
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BBPD Delay
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JGEN vs. Bang-Bang Step Size

 As bang-bang step size increases:
 Contribution of PD noise to output noise increases
 Contribution of VCO noise to output noise decreases
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JTRAN Dependence on Jitter

 JTRAN is inversely proportional to input jitter
 Difficult to predict a priori

 Set JTRAN for minimum input jitter condition
 Makes it more susceptible to VCO phase noise
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Tutorial Roadmap

 Performance metrics

 Basic architectures
 Linear/Bang-bang
 Digital
 Hybrid

 Application-specific CDRs
 Multi-lane chip-to-chip links
 Repeaters for optical and active cables

 Summary
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Eliminating Loop Filter Capacitor

 Digital accumulator replaces loop filter capacitor
 Large time constant with small area
 Infinite DC gain  ideal Type-II behavior
 PVT insensitive
 Easy to reconfigure for loop dynamics control 

 Map CP + LF into digital domain directly
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DE

DR

VCTRL
icp
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Simple Digital CDR[6]

 Loop filter must operate at data rate

 Need:
 Wide operand high-speed adders
 High speed/resolution Digital to Analog Converter (DAC)

DAC RCK
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KI
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BBPD

Accumulator
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Reducing Speed Requirements (I)

 Decimation eases speed requirements

 Lower update rate  increases loop latency
 Loop latency increases dithering jitter

 Observation: Proportional path dominates jitter

DAC RCK
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Reducing Speed Requirements (II)

 Fast proportional path
 Minimize latency  reduce dithering jitter

 High resolution integral path
 Minimize tracking jitter

 Minimal hardware penalty
 Needs only 2-level high-speed PDAC
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Practical Digital CDR

 Loop delay increases integral path dithering jitter
 Reduce gain by dropping lower LSBs

 IDAC implemented using ΔΣ techniques
 Proportional and integral controls summed in VCO
 Area efficient  can be fully integrated

RCK
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Digital CDR Drawbacks

 Coupled JTRAN and JTOL
 Jitter peaking 
 Large loop filter area

 JGEN vs bang-bang step size tradeoff
 JTRAN dependence on input jitter

 Sensitive to Consecutive Identical Digits 
(CIDs)

Similar to linear CDR

Similar to 
BB CDR
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Impact of CIDs[7]

 BBPD output is zero for the duration of CIDs
 CDR operates in open loop

 All benefits of feedback are lost
 Noise, leakage, PVT sensitivity, … 
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All zeros or onesDIN

ΔΦIMAX 

ΔΦRCK,P 

ΔΦRCK,I 

ΔΦPMAX 

T0

JGEN due to CIDs

 CIDs exacerbate frequency quantization error
 Output phase drifts at a rate proportional to freq. error

 Impact on JGEN depends on:
 Number of CIDs (NCID)
 Integral path frequency quantization error (ΔFI)
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Analog vs. Digital CDRs 

 Analog CDR using linear PD
 Well-controlled loop dynamics
 PD non-idealities degrade timing margin/BER
 Large loop filter capacitor

 Digital CDR using bang-bang PD
 Non-linear loop dynamics (JTRAN depends on jitter)
 Bang-bang PD maximizes timing margin
 No large capacitor (small area)

 Can we combine the advantages?
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Hybrid Analog/Digital CDR[8]

 Proportional path sets loop bandwidth (JTRAN)
 Fixed gain leads to linear loop dynamics
 Eliminates phase quantization error

 Digital integral path sets steady state
 Makes it insensitive to linear PD phase offset
 Accumulator filters BBPD quantization error
 Causes ripple on the proportional path

RCK
KI

z-1

BBPD M

Digital integral path

PDAC

IDAC

Hogge
PD Analog propotional path

RDATA
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Hybrid CDR JTRAN Characteristics 
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Tutorial Roadmap

 Performance metrics

 Basic architectures
 Linear/Bang-bang
 Digital
 Hybrid

 Application-specific CDRs
 Multi-lane chip-to-chip links
 Repeaters for optical links and active cables

 Summary
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Multi-lane Chip-to-Chip Links

 Source synchronous clocking is common

 BUT many standards mandate embedded clocking
 Examples: PCIe, XAUI, SATA, etc.
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Multi-Lane CDR Challenges

 Many VCOs & capacitors

 Large area

 Harmonic locking

RCK1

VCO
PD/CP

R
C

RCK2

VCO
PD/CP

R
C

RCKN

VCO
PD/CP

R
C



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 64 of 91

Multi-Lane CDR Solution
Digital Phase Accumulator (DPA)
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Digital Phase Accumulator (DPA)

 Oscillators are phase accumulators
 Modulo 2π accumulation

 Mimic oscillator operation
 Explicit phase accumulation
 Infinite phase shifting by modulo accumulation

Oscillator DPA

t

2π 

ΦOUT

TPERIOD 2TPERIOD

2π 

ΦOUT

DCTRL
M-1
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Conceptual DPA Realization

 Digital accumulator mimics phase accumulation
 Rate governed by clock frequency
 Modulo arithmetic maps 2π phase to 0

 DPC generates output phase
 DPC non-idealities directly appear at the output

z-1
DPC ΦOUTDCTRL

Modulo accumulator

DPC: Digital to Phase Converter
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Practical DPA Realization

 DPC implemented using a mux

PFD VCOLF

MPG: Multi Phase Generator

z-1
DCTRL

N

ΦOUT

DPC



Clock and Data Recovery Architectures & Circuits
© 2015 IEEE 
International Solid-State Circuits Conference 68 of 91

Dual-Loop CDR[9]

 Dual loop: Loop # 1: PLL(MPG), Loop # 2: CDR
 DPA replaces DCO in the CDR
 PLL guarantees frequency locking

BBPD

RCK

DPA
KP

KI

z-1

DIN
KF 

z-1

DCTRL

PFD VCOLF

N

LOOP # 1: PLL

LOOP # 2: Digital CDR
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Practical Dual-Loop CDR[10]

 Phase interpolator (ΦINT) improves DPA resolution
 Better JGEN

 PI resolution depends on many factors
 Input rise time, input phase spacing, PI BW,…

ΦINT

DCTRL
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MSBs

BBPD

RCK
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Long-Haul Communication

0 1 2 3
 Difficult to achieve error-free operation

DATATX DATARX
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Active Repeaters

 Repeater requirements
 Tolerate large input jitter (high JTOL)
 Filter input jitter (low JTRAN) w/ minimal peaking
 Re-transmit with low jitter (Low JGEN)

5

0

5

Repeater

VCO
PD/CP

RDATA

DATARXDATATX
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How About Conventional CDR?

 Jitter peaking  large loop filter capacitor

 High JTOL  high JTRAN
 Cannot adequately filter i/p jitter  degrades RCK jitter

RCK
VCO

PD/CP
R
C

JTRAN

JTOL
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How to Eliminate Jitter Peaking?
 Main idea: Remove zero in feed-forward path 

Feed-forward across current integrator
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Eliminate Jitter Peaking (I)[11]

Feed-forward across phase integrator (VCO)

No zero in feed-forward path
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Eliminate Jitter Peaking (II)
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CDR w/ No Jitter Peaking

RCK
VCO

PD/CP
CVCDL

PLL

DLL
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D/PLL CDR Jitter Transfer (I)
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 No jitter peaking if damping factor > 0.707

 JTRAN BW = lower of the 2 pole frequencies

D/PLL CDR Jitter Transfer (II)
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D/PLL CDR Jitter Tolerance (I)
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D/PLL CDR Jitter Tolerance (II)

 JTOL corner = higher of the 2 pole frequencies
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D/PLL CDR JTRAN vs. JTOL

 Decoupled JTRAN and JTOL
 ωPL sets JTRAN BW
 ωPH sets JTOL corner frequency
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A Practical D/PLL CDR

 Additional frequency-locking loop (FLL)
 Challenges: 

 Frequency detection of random data
 Interaction between FLL and PLL

RCK
VCO

PD/CP
CVCDL

PLL

DLL

Frequency 
Detector

CF

CP

FLL
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Limited Capture Range

 Symmetric PD transfer characteristic
 Avg. PD output becomes zero w/ frequency error

 PD cannot detect large frequency error 

Average Phase Detector Output

0 π 
2π 

-2π -π ΦError

Sum averages to zero
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Frequency Detectors

 Rotational frequency detector[12-14]

 Quadri-correlator frequency detector[15-16]

 Stochastic reference clock generator[17]

 Miscellaneous FDs
 Strobed linear PD[18]

 Counting BBPD outputs [19]
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Summary

 Understanding of CDR specifications
 What are the important jitter metrics for a given app.?

 Understanding of CDR architectures
 What is the best architecture for a given app.?

 CDR design techniques
 How to choose the loop parameters?

Applications

Chip-to-chip
Optical
Memory
Mobile

Specifications Architecture

JTOL
JTRAN
JGEN
Power
Area

Linear
Bang-bang

Analog/Digital
Refrence-less

Single-loop
Dual-loop
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applications
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 10.5: Baud-rate CDR 
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