Clock and Data Recovery Architectures & Circuits

Pavan Hanumolu hanumolu@illinois.edu Dept. of Electrical and Computer Engineering University of Illinois, Urbana-Champaign

Feb. 22, 2015

Serial Link Applications

Serial Link Components

- Transmitter
- Channel
- □ Receiver

Clock Recovery (CR) + Data sampler = CDR

Serial Link Waveforms

Serial Link Eye Diagrams

This Tutorial Focus: CDR

Tutorial Goals

Map application requirements to CDR specifications

- Optimal architecture choice based on CDR specs.
 - Exposure to different CDR architectures
 - Develop intuition for design tradeoffs
 - Awareness to practical considerations

Tutorial Roadmap

Performance metrics

- Basic architectures
 - Linear/Bang-bang
 - Digital
 - Hybrid
- Application-specific CDRs
 - Multi-lane chip-to-chip links
 - Repeaters for optical links and active cables

□ Summary

CDR Performance Metrics

Jitter Tolerance (JTOL)

Maximum tolerable input jitter for a given BER

JTOL Mask

Increase data input sinusoidal jitter until BER exceeds target

Jitter Transfer (JTRAN)

Amount of jitter attenuation provided by CDR

JTRAN Mask

Modulate data input with sinusoidal jitter and measure resulting output jitter

Jitter Generation (JGEN)

Amount of output jitter when fed with clean data

Tutorial Roadmap

Performance metrics

Basic architectures

- Linear/Bang-bang
- Digital
- Hybrid
- Application-specific CDRs
 - Multi-lane chip-to-chip links
 - Repeaters for optical links and active cables

□ Summary

Phase-Locked Loop based CDR

□ This **WON'T work** because:

- Crystal oscillators at TX and RX do not match
- No phase relationship between received data and RCK

□ **<u>Need</u>**: Acquire freq. & phase information from data

PLL-based CDR

Phase detector should tolerate missing transitions
 Rest of the building blocks similar to a PLL

Neg. edge of recovered clock locks to data edge
 Pos. edge samples data in the middle of the eye

Linear (Hogge) Phase Detector^[1]

- \Box Error output (D_E - D_R) is difference of 2 pulses
 - Pulse width of D_E is proportional to phase error
 - Pulse width of D_R is fixed and is equal to $T_{RCK}/2$
- □ Area under D_E - D_R is proportional to phase error
 - Area is zero when RCK is aligned with D_{IN}

Hogge PD Waveforms

Hogge PD Transfer Function

CDR Using Hogge Phase Detector

- □ Type-II response
 - 2 integrators one in the loop filter and the other is VCO
- □ Zero static phase offset (ideally)
 - CP output should be zero in steady state
 - Implies input phase error = 0

Choosing Loop Parameters

$$\Phi_{\text{DIN}} \xrightarrow{\Phi_{\text{H}}} K_{\text{PD}} \xrightarrow{R + \frac{1}{sC}} \underbrace{K_{\text{VCO}}}_{s} \xrightarrow{\Phi_{\text{RCK}}}$$

$$\text{LG(s)} = K_{\text{PD}} \cdot \left(R + \frac{1}{sC}\right) \cdot \underbrace{K_{\text{VCO}}}_{s} \xrightarrow{\text{LG}} \xrightarrow{\omega_{\text{ugf}}} \xrightarrow{$$

Jitter Transfer Function

Linear CDR Drawbacks

□ Jitter peaking (large loop filter area)

Coupled JTRAN and JTOL

□ Hogge PD non-idealities

Jitter Peaking (I)

Jitter Peaking (II)^[2]

Jitter Tracking

Jitter Tolerance (JTOL) (I)

Jitter Tolerance (JTOL) (II)

□ JTOL improves w/ better jitter tracking
 ■ Better jitter tracking → wider JTRAN bandwidth!

Coupled JTRAN/JTOL Behavior

 \Box Both JTRAN and JTOL are governed by ω_{PH}

Hogge PD Non-idealities: Offset^[2]

□ FF1 clock-to-Q delay introduces phase offset

Hogge PD Offset Mitigation^[2]

- FF1 clock-to-Q delay introduces phase offset
- □ FF1 delay compensated by inserting buffer
 - T_D may not track T_{CK-Q} across supply and temperature
 - Generating small well controlled T_D is also difficult

Hogge PD Non-idealities: DDJ^[2]

D_E/D_R pulses not aligned in time
 "Tri-wave" on V_c causes Data Dependent Jitter (DDJ)
 See [2] for modified Hogge PD to mitigate DDJ

Bang-Bang Phase Detector (I)

□ Can we detect phase error from sampled data?

Bang-Bang Phase Detector (II)^[3]

BBPD Characteristics: w/o Jitter

BBPD Characteristics: w/Jitter (I)^[4]

 $\overline{V_{\rm PD}(\Delta T)} = V_{\rm L} \cdot P(V_{\rm PD} = V_{\rm L}) + V_{\rm H} \cdot P(V_{\rm PD} = V_{\rm H})$

BBPD Characteristics: w/ Jitter (II)

$$\overline{\mathrm{V}_{\mathrm{PD}}(\Delta\mathrm{T})} = 2\mathrm{V_o}{\cdot}erf\left(rac{\Delta\mathrm{T}}{\sigma_\mathrm{j}}
ight)$$

$$erf(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\mathbf{x}} e^{-\mathbf{y}^{2}} d\mathbf{y}$$

$$\mathrm{Gain} \ \mathrm{K_{PD}}|_{\Delta\mathrm{T}=0} {=} rac{2\mathrm{V_o}}{\sqrt{2\pi}\sigma_\mathrm{j}}$$

$${
m Linear\ range}:\pm 2\sigma_{
m j}$$

Full-rate Bang-Bang CDR

- □ Type-II response
- Near-zero static phase offset
- Insensitive to charge-pump non-idealities
- □ VCO & PD operate at full-rate ($F_{VCO} = F_{DIN}$)
 - Could become a speed bottleneck
 - Solution: Half-rate bang-bang CDR

Half-rate CDR Waveforms

Half-Rate Bang-Bang CDR

- Topology same as full-rate architecture
 - Same phase detection logic as full-rate
- □ Requires quadrature VCO
 □ Lower loop update rate → higher loop latency

Choosing Loop Parameters^[5]

BBPD makes the loop non-linear

- Cannot use transfer function analysis
- Loop gain is infinite \rightarrow unstable in "linear sense"

Ensure stability by choosing large damping factor

Relatively independent proportional and integral paths

Bang-Bang CDR Drawbacks

- Coupled JTRAN and JTOL
- Jitter peaking
- □ Large loop filter area

- Similar to linear CDR

□ JGEN caused by limit cycles

JTRAN dependence on input jitter

Steady-State Limit Cycles (I)

Steady-State Limit Cycles (II)

Loop Delay Increases JGEN

JGEN vs. Bang-Bang Step Size

Contribution of VCO noise to output noise decreases

JTRAN Dependence on Jitter

JTRAN BW $\approx K_{\rm PD} \cdot K_{\rm P} \cdot K_{\rm VCO}$

$${\rm Gain}\; {\rm K}_{\rm PD}|_{\Delta {\rm T}=0} {=}\; \frac{2 {\rm V}_{\rm o}}{\sqrt{2\pi} \sigma_{\rm j}} \implies {\rm JTRAN}\; {\rm BW} \propto \frac{1}{\sigma_{\rm j}}$$

- JTRAN is inversely proportional to input jitter
 Difficult to predict *a priori*
- Set JTRAN for minimum input jitter condition
 Makes it more susceptible to VCO phase noise

Tutorial Roadmap

Performance metrics

Basic architectures

- Linear/Bang-bang
- Digital
- Hybrid
- Application-specific CDRs
 - Multi-lane chip-to-chip links
 - Repeaters for optical and active cables

□ Summary

Eliminating Loop Filter Capacitor

Map CP + LF into digital domain directly

Digital accumulator replaces loop filter capacitor

- Large time constant with small area
- Infinite DC gain \rightarrow ideal Type-II behavior
- PVT insensitive
- Easy to reconfigure for loop dynamics control

Simple Digital CDR^[6]

Loop filter must operate at data rate

□ <u>Need:</u>

- Wide operand high-speed adders
- High speed/resolution Digital to Analog Converter (DAC)

Reducing Speed Requirements (I)

- Decimation eases speed requirements
- □ Lower update rate → increases loop latency
 Loop latency increases dithering jitter

Observation: Proportional path dominates jitter

Reducing Speed Requirements (II)

- Fast proportional path
 - Minimize latency \rightarrow reduce dithering jitter
- High resolution integral path
 - Minimize tracking jitter
- Minimal hardware penalty
 - Needs only 2-level high-speed PDAC

Practical Digital CDR

Loop delay increases integral path dithering jitter

- Reduce gain by dropping lower LSBs
- \Box IDAC implemented using $\Delta\Sigma$ techniques
- Proportional and integral controls summed in VCO
- \Box Area efficient \rightarrow can be fully integrated

Digital CDR Drawbacks

- Coupled JTRAN and JTOL
- Jitter peaking
- Large loop filter area

- Similar to linear CDR

JGEN vs bang-bang step size tradeoff

JTRAN dependence on input jitter

Similar to BB CDR

Sensitive to Consecutive Identical Digits (CIDs)

Impact of CIDs^[7]

- □ BBPD output is zero for the duration of CIDs
 - CDR operates in open loop
- All benefits of feedback are lost
 - Noise, leakage, PVT sensitivity, ...

JGEN due to CIDs

Analog vs. Digital CDRs

- Analog CDR using linear PD
 - Well-controlled loop dynamics
 - PD non-idealities degrade timing margin/BER
 - Large loop filter capacitor
- Digital CDR using bang-bang PD
 - Non-linear loop dynamics (JTRAN depends on jitter)
 - Bang-bang PD maximizes timing margin
 - No large capacitor (small area)

□ Can we combine the advantages?

Hybrid Analog/Digital CDR^[8]

- Proportional path sets loop bandwidth (JTRAN)
 - Fixed gain leads to linear loop dynamics
 - Eliminates phase quantization error
- Digital integral path sets steady state
 - Makes it insensitive to linear PD phase offset
 - Accumulator filters BBPD quantization error
 - Causes ripple on the proportional path

Hybrid CDR JTRAN Characteristics

Tutorial Roadmap

Basic architectures

- Linear/Bang-bang
- Digital
- Hybrid

Application-specific CDRs

- Multi-lane chip-to-chip links
- Repeaters for optical links and active cables

□ Summary

Multi-lane Chip-to-Chip Links

Source synchronous clocking is common

BUT many standards mandate embedded clocking Examples: PCIe, XAUI, SATA, etc.

Multi-Lane CDR Challenges

Multi-Lane CDR Solution

Digital Phase Accumulator (DPA)

Digital Phase Accumulator (DPA)

Conceptual DPA Realization

DPC: Digital to Phase Converter

Digital accumulator mimics phase accumulation

- Rate governed by clock frequency
- Modulo arithmetic maps 2π phase to 0

DPC generates output phase

DPC non-idealities directly appear at the output

Practical DPA Realization

DPC implemented using a mux

$$\Phi_{\rm OUT} = \Phi_{\rm VCO} + D_{\rm CTRL} \cdot K_{\rm DPC}$$

For M-phase VCO :
$$K_{DPC} = \frac{2\pi}{M}$$

Dual-Loop CDR^[9]

- Dual loop: Loop # 1: PLL(MPG), Loop # 2: CDR
 DPA replaces DCO in the CDR
 DLL suprantoes frequency looking
- PLL guarantees frequency locking

Practical Dual-Loop CDR^[10]

□ Phase interpolator (Φ_{INT}) improves DPA resolution
 ■ Better JGEN

PI resolution depends on many factors
Input rise time, input phase spacing, BI BW

Long-Haul Communication

□ Difficult to achieve error-free operation

Active Repeaters

Repeater requirements

- Tolerate large input jitter (high JTOL)
- Filter input jitter (low JTRAN) w/ minimal peaking
- Re-transmit with low jitter (Low JGEN)

How About Conventional CDR?

 \Box Jitter peaking \rightarrow large loop filter capacitor

$\Box \text{ High JTOL} \rightarrow \text{high JTRAN}$

Cannot adequately filter i/p jitter \rightarrow degrades RCK jitter
How to Eliminate Jitter Peaking?

Main idea: Remove zero in feed-forward path

Feed-forward across current integrator

Eliminate Jitter Peaking (I)^[11]

Eliminate Jitter Peaking (II)

CDR w/ No Jitter Peaking

D/PLL CDR Jitter Transfer (I)

D/PLL CDR Jitter Transfer (II)

$$\mathbf{H}_{\mathsf{JTRAN}}(\mathbf{s}) = \frac{1}{1 + \mathbf{s} \cdot \frac{\mathsf{K}_{\mathsf{VCDL}}}{\mathsf{K}_{\mathsf{VCO}}} + \mathbf{s}^2 \cdot \frac{\mathsf{C}}{\mathsf{K}_{\mathsf{VCO}}\mathsf{K}_{\mathsf{PD}}}} \equiv \frac{1}{\left(1 + \mathbf{s}/\omega_{\mathsf{PL}}\right) \left(1 + \mathbf{s}/\omega_{\mathsf{PH}}\right)}$$

$$\implies \omega_{\rm pl} \approx \mathbf{K}_{\rm vco} / \mathbf{K}_{\rm vcdl}; \ \omega_{\rm ph} \approx \mathbf{K}_{\rm vcdl} \cdot \mathbf{K}_{\rm pd} / \mathbf{C}$$

$$\textbf{JTRAN BW} = \omega_{\text{-3dB}} \approx \omega_{\text{pl}} = \textbf{K}_{\text{vco}}/\textbf{K}_{\text{vcdl}}$$

No jitter peaking if damping factor > 0.707
JTRAN BW = lower of the 2 pole frequencies

D/PLL CDR Jitter Tolerance (I)

D/PLL CDR Jitter Tolerance (II)

$$\mathbf{H}_{\mathsf{JTRACK}}(\mathbf{s}) = \frac{\mathbf{s}^2 \cdot \frac{\mathsf{C}}{\mathsf{K}_{\mathsf{VCO}}\mathsf{K}_{\mathsf{PD}}}}{1 + \mathbf{s} \cdot \frac{\mathsf{K}_{\mathsf{VCDL}}}{\mathsf{K}_{\mathsf{VCO}}} + \mathbf{s}^2 \cdot \frac{\mathsf{C}}{\mathsf{K}_{\mathsf{VCO}}\mathsf{K}_{\mathsf{PD}}}} \equiv \frac{\mathbf{s}^2 / \omega_{\mathsf{PL}} \omega_{\mathsf{PH}}}{(1 + \mathbf{s} / \omega_{\mathsf{PL}}) \left(1 + \mathbf{s} / \omega_{\mathsf{PH}}\right)}$$

$$\implies \omega_{\rm pl} \approx \mathbf{K}_{\rm vco}/\mathbf{K}_{\rm vcdl}; \ \omega_{\rm ph} \approx \mathbf{K}_{\rm vcdl} \cdot \mathbf{K}_{\rm pd}/\mathbf{C}$$

$$\mathsf{JTRACK}/\mathsf{JTOL} \,\, \mathsf{Corner} \,\, = \,\, \omega_{\text{-3dB}} \,\, \approx \omega_{\text{PH}} \,\, \approx \mathsf{K}_{\text{vcdl}} \cdot \mathsf{K}_{\text{pd}}/\mathsf{C}$$

\Box JTOL corner = higher of the 2 pole frequencies

D/PLL CDR JTRAN vs. JTOL

Decoupled JTRAN and JTOL

- ω_{PL} sets JTRAN BW
 - ω_{PH} sets JTOL corner frequency

A Practical D/PLL CDR

- Additional frequency-locking loop (FLL)
- □ Challenges:
 - Frequency detection of random data
 - Interaction between FLL and PLL

Limited Capture Range

- Symmetric PD transfer characteristic
- □ Avg. PD output becomes zero w/ frequency error
 - PD cannot detect large frequency error

Frequency Detectors

- Rotational frequency detector^[12-14]
- Quadri-correlator frequency detector^[15-16]
- □ Stochastic reference clock generator^[17]
- □ Miscellaneous FDs
 - Strobed linear PD^[18]
 - Counting BBPD outputs ^[19]

Summary

- Understanding of CDR specifications
 - What are the important jitter metrics for a given app.?
- Understanding of CDR architectures
 - What is the best architecture for a given app.?
- CDR design techniques
 - How to choose the loop parameters?

Selected References (I)

- 1. C. Hogge, "A self correcting clock recovery circuit," J. Lightwave Technol., pp. 1312-1314, Dec. 1985.
- L. DeVito, "A versatile clock recovery architecture and monolithic implementation," in Monolithic Phase-Locked Loops and Clock Recovery Circuits, B. Razavi, Ed. Wiley-IEEE Press, 1996, pp. 405-420.
- **3.** J. Alexander, "Clock recovery from random binary signals," Electr. Lett., pp. 541-542, Oct. 1975.
- 4. J. Lee and B. Razavi, "Analysis and modeling of bang-bang clock and data recovery circuits," *IEEE J. Solid-State Circuits,* pp. 1571-1580, Sep. 2004.
- 5. R. Walker, et al., "A 2-Chip 1.5 Gigabaud serial link interface," *IEEE J. Solid-State Circuits*, pp. 1805-1811, Dec. 1992.
- 6. J. Sonntag and J. Stonick "A digital clock and data recovery architecture for multi-gigabit/s binary links", *IEEE J. Solid-State Circuits*, pp.1867-1875, Aug. 2006.

Selected References (II)

- 7. M. Talegaonkar, R. Inti, P. Hanumolu, "Digital clock and data recovery circuit design: Challenges and tradeoffs", *IEEE Custom Integrated Circuits Conference*, 2011.
- 8. W. Yin, R. Inti, A. Elshazly, and P. Hanumolu, "A TDC-less 7mW 2.5Gb/s digital CDR with linear loop dynamics and offset-free data recovery," in *ISSCC Dig. Tech. Papers*, pp. 440-442, Feb. 2011.
- 9. J. Sonntag and R. Leonowich "A monolithic CMOS 10 MHz DPLL for burst-mode data retiming", *IEEE ISSCC Dig. Tech. Papers*, pp.194 -195, Feb. 1990
- S. Sidiropoulos and M. Horowitz, "A semidigital dual delay-locked loop," *IEEE J. Solid-State Circuits*, 1683–1692, 1997.
- 11. T. Lee and J. Bulzacchelli, "A 155-MHz clock recovery delay-and phase-locked loop," *IEEE J. Solid-State Circuits*, pp. 1736-1746, Dec. 1992.

Freq. Detector References (I)

- D. Richman, "Color-Carrier Reference Phase Synchronization Accuracy in NTSC Color Television," Proceedings of the IRE, vol. 42, no.1, pp.106-133, Jan. 1954.
- 13. A. Pottbacker, et al., "A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s," *IEEE J. Solid-State Circuits*, pp.1747,1751, Dec 1992
- 14. D. Dalton, et al., "A 12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback," *IEEE J. Solid-State Circuits*, pp. 2713–2725, Dec. 2005.
- 15. F. M. Gardner, "Properties of frequency difference detectors," IEEE Trans. Comm., vol. COM-36, no. 2, pp. 131–138, Feb. 1985.
- N. Kocaman, et al., "An 8.5–11.5-Gbps SONET transceiver With reference-less frequency acquisition," *IEEE J. Solid-State Circuits*, pp. 1875–1884, Aug. 2013.

Freq. Detector References (I)

- 17. R. Inti, et al., "A 0.5-to-2.5 Gb/s reference-less half-rate digital CDR with unlimited frequency acquisition range and improved input duty-cycle error tolerance," *IEEE J. Solid-State Circuits*, pp. 3150–3162, Dec. 2011.
- 18. S. Huang, et al., "An 8.2-to-10.3 Gb/s full-rate linear reference-less CDR without frequency detector in 0.18μm CMOS," in *IEEE ISSCC Dig. Tech. Papers*, Feb 2014, pp. 152– 153.
- 19. G. Shu, et al., "A 4-to-10.5 Gb/s 2.2 mW/Gb/s continuous-rate digital CDR with automatic frequency acquisition in 65 nm CMOS," in IEEE ISSCC Dig. Tech. Papers, Feb 2014, pp. 150– 151.

Related ISSCC 2015 Papers

- Papers 22.7 & 22.8: Reference-less CDRs for beyond 25Gb/s optical links
- 22.1 & 3.7: Fast locking CDR for burst-mode applications
- □ 3.1: Quarter-rate dual loop CDR
- □ 10.5: Baud-rate CDR

Acknowledgements

- Jack Kenney, Ali Sheikholeslami, Guanghua Shu, and Mrunmay Talegoankar for reviewing and providing detailed feedback
- Ajith Amarasekara and Ali Sheikholeslami for coordination
- □ Seong-Joong Kim for assistance with preparation