Simulation Techniques in Data Converter Design

Shanthi Pavan Indian Institute of Technology, Madras

Outline

- Overview of selected Nyquist ADCs
- Creating and interpreting ADC spectra
- Oversampling ADCs
 - Simulation techniques
 - Use of RF analyses in oversampling converter designs
- Concluding Remarks
- References

Data Conversion in our World

The A/D Conversion Process

Simulation Strategies

- ADCs and DACs are complex mixed signal systems
- Can be simulated at several levels
 - ADC Functional Behavior
 - Models at the block level
 - Models at the circuit level
 - Mix and match

Simulation Strategies

- Functional behavior
 - Full chip or SoC functionality simulation
 - Second order effects not important/needed
- Block level models
 - Architectural exploration
 - What-if scenarios
 - Rapid estimates of mismatch effects
- Mix and match
 - Behavioral + transistor level
 - Helps isolate problems during debug

Simulation Strategies

- Functional behavior
 - Full chip or SoC functionality simulation
 - -<u>Second order effects not important/needed</u>
- B Always run the full layout extracted design at the transistor level –
 What you did not model bites you most of the time
 - Rapia commates or momater encoto
- Mix and match
 - Behavioral + transistor level
 - Helps isolate problems during debug

ADC Architectures

- Nyquist Rate
 - Flash
 - Folding
 - Two step
 - Pipeline and Algorithmic
 - Successive Approximation (SAR)
- Oversampling ($\Sigma\Delta$) ADCs
 - Discrete-time $\Sigma\Delta$
 - Continuous-time $\Sigma\Delta$

8 of 132

DAC Architectures

- Nyquist Rate
 - Current Steering
 - Resisitor String
 - Algorithmic
- Oversampling ($\Sigma\Delta$) DACs
- Not covered in this tutorial

ADC Operations : Sampling

Offset Error

Benign when relative accuracy is desired - Cancelled digitally

Differential Nonlinearity (DNL)

Dynamic Performance Metrics

- Peak Signal to Noise Ratio (SNR) of an ideal quantizer
 - -(6N + 1.76) dB for a full scale sine wave

-1/2 the step size means $\frac{1}{4}$ the noise power

- Signal to Noise + Distortion Ratio (SNDR)
 - Signal to everything else
- Effective Number of Bits (ENOB)

$$\text{ENOB} = \frac{\text{SNDR} - 1.76}{6.02}$$

Spurious Free Dynamic Range

Flash A/D Conversion

- (+) Parallel technique
 → Low latency
- (+) References – resistor ladder
- (-) Complexity $O(2^N)$
- (-) Excessive power and area for N > 6

Practical Flash ADC

"Flash ADC Family" Design Steps

- Comparator design
 - Should have sufficiently low static and dynamic offset
 - Must regenerate sufficiently fast
- Track and Hold design
 - Tricky and depends on comparator architecture
- Back end logic

- CCCS emulates the load of *n* comparators
 - with only one comparator instantiation
- Convenient during design iteration

Flash ADC Simulations

Two Step Flash ADC

• Motivation:

– Reduce number of comparators in a flash ADC

• Idea:

In a flash ADC, only comparators "near" the input give useful information

Use a coarse ADC to estimate where the signal is, then use a fine ADC placed "around" the coarse estimate for better accuracy

Two Step Flash ADC **ADC** ADC DAC V_{in} $N_{\rm C}$ BITS N_F BITS V_R/8 $V_{R/2}$ = V_{in} $-V_{R}/2$ Fine ADC Levels V_R/8 Number of comparators : $(2^{N_c} + 2^{N_f} - 2)$ Resolution $N_c + N_f$ bits

ADCs & DAC must be good to $(N_c + N_f)$ bits

Improved Two Step Flash ADCs

- The fine ADC operates on a small input
 - Offset requirements for the fine ADC can be relaxed if the input signal swing was larger
 - -Amplify the input to the fine ADC

Pipeline ADC Principle

Pipeline ADC Principle

- Recursive implementation of the fine ADC
- Each stage implemented using switched capacitor techniques
- State of the art pipelines based on sophisticated digital correction and calibration algorithms

- High level design exploration at the behavioral level
 - Bits per stage
 - Opamp gain, linearity and bandwidth requirements
 - Capacitor matching studies
 - Digital calibration algorithms
- Stage Design
 - Opamp
 - Coarse ADC & DAC

Example Pipeline ADC Stage

DAC, Subtraction and Amplifier using one switched capacitor stage : SPICE it carefully

Spectral Analysis in ADC Design

ADC Simulation: Black Box Testing

Basics

A discrete-time signal is periodic with period *P* if

$$s[n] = s[n+P]$$

It can be expanded into the *discrete* Fourier Series

$$s[n] = \sum_{k=0}^{k=P-1} A_k \cos\left[2\pi \frac{k}{P}n + \phi_k\right]$$

A discrete-time periodic signal with period *P* has only *P* coefficients in its Fourier expansion

 A_k, ϕ_k can be rapidly computed using the FFT

Jargon $\frac{f_s}{P}$ is the FFT bin width

Choice of
$$f_{in}$$

ADC
 $A \cos(2\pi f_{in}t)$
 $A \cos\left[2\pi \frac{f_{in}}{f_s}n\right] = A \cos\left[2\pi \frac{f_{in}}{f_s}(n+P)\right] = A \cos\left[2\pi \frac{f_{in}}{f_s}n + 2\pi \frac{f_{in}}{f_s}P\right]$
periodic only if $\frac{f_{in}}{f_s} = \frac{m}{P}$

Input and sampling frequencies must be rationally related

Integral number of input cycles in the length of a record

$$\frac{f_{in}}{f_s} = \frac{m}{P}$$
 Is any $\frac{m}{P}$ good ?

For a wrongly chosen *m*, multiple harmonics alias to the same frequencies after sampling

If $f_{in} = f_s/4$ all odd harmonics alias to $f_s/4$

Moral : Choose f_{in} so that its significant harmonics do not alias to the same locations

Choice of f_{in}

- (f_{in} / f_s) must be rational (m/P)
- Choose m and P to be relatively prime
- Convenient for FFT : choose $P = 2^{Q}$

$$f_{in} = \frac{m}{2^Q} f_s$$

Jargon : Input tone "lies on a bin"

Example : Choice of *f*_{in}

- 6-bit ADC sampling rate $(f_s) = 1$ GS/s
- Want to test around 250 MHz
- Choose record length = 1024 $f_{in} = \frac{253}{1024} f_s = 247.0703125 \,\mathrm{MHz}$
- Do not round off !

Test Setup for a Nyquist ADC

ADC input and clock source must be synchronous

 What happens when f_{in} & f_s are not rationally related ? (a.k.a f_{in} is "not on a bin")

Aside

- What are the implications of computing the FFT of an *P* point sequence ?
- You assume that the sequence is one period of a periodic discrete-time sequence with period P
- You are computing the coefficients of the discrete Fourier series of this periodic sequence

FFT Leakage

FFT Leakage

Jump here – impulse – lots of spectral energy everywhere Called FFT "leakage"

FFT Leakage

Why is Leakage Problematic ?

47 of 132

Why is Leakage Problematic ?

FFT Leakage : Solution

Basic Idea :

Data at the ends of the record are problematic \rightarrow Pay less attention to the ends of the record

Leakage : A spectral view

Leakage : A spectral view

Discrete Fourier Series is obtained by sampling the Discrete Fourier Transform

Leakage : with windowing

Commonly used windows

Trade off between main lobe width and side lobe suppression

Simulation of $\Delta\Sigma$ ADCs

- Stiff
 - Low frequency input, high frequency clock
- No "one-to-one" correspondence between input and output
 - Debug is not trivial
- Computing SNDR
 - More involved than the Nyquist case
- Simulating device noise
 - Computationally expensive

Delta Sigma ADCs

Basic Idea

Embed a coarse quantizer in a negative feedback loop

L(z) has high gain @ low frequency $\Rightarrow v \approx u$ @ low frequency

Oversampling Converters

Oversampling Converters $\left|\frac{L(z)}{1+L(z)}U(z)\right| +$ Signal Transfer Noise Transfer Function Function STF NIF $L(z) \to \infty \text{ as } z = e^{j\omega} \to 1$ $STF(z) \rightarrow 1$ and $NTF(z) \rightarrow 0$ Quantization Noise is high pass filtered \Rightarrow High inband SNR

Oversampling Converters

Noise Transfer Function NTF

Choosing an appropriate L(z) is the first step in the design Too little gain : Not enough noise suppression Gain is too high : Loop becomes unstable

NTF = High Pass Filter Design

Example $\Delta\Sigma$ Converter Waveforms

Signal Dependent Stability

Shaped Quantization Noise

- $u \rightarrow$ close to quantizer saturation limits
- Shaped noise saturates the quantizer \rightarrow e increases
- This saturates the quantizer more
 - \rightarrow e increases even more
- ... until y becomes unbounded
 - \rightarrow modulator becomes unstable

Stability

Signal dependent stability to be expected

 $\frac{\text{Stable Input Range}}{\text{Quantizer Range}} = \text{Maximum Stable Amplitude (MSA)}$

- MSA depends on
 - -NTF
 - Number of quantizer levels
 - Input frequency

DAC Nonidealities

DEM : Magically shapes mismatch noise out of the signal band

Generic Single Loop DT-DSM

- Input sampled at the loop filter output
 - Implicit anti-aliasing if the loop filter is time invariant
- Resistive input impedance \rightarrow easy to drive
- Reduced slew requirements of opamps

$\Delta\Sigma$ ADC : Design Flow

- Choose OSR, quantizer levels, NTF and architecture
 - Determine MSA (use simulation)
- Determine component values
- Design building blocks
 - Loop filter, ADC, DAC, DEM logic

Building Block Design - DT

Building Block Design - CT

High Level Design Aids

- $\Delta\Sigma$ Toolbox for MATLAB
 - Richard Schreier of Analog Devices
- Neat set of routines that enable high level design and rapid simulation
 - Find SN(D)R, MSA for a given NTF
 - Simulate a DT modulator given loop filter description in state space form

- Support for multiple inputs/quantizers
- Can be combined with the power of MATLAB to design/simulate CTDSMs as well

$\Delta\Sigma$ Toolbox for MATLAB

- All linear effects can be modeled with the tool box
 - Finite gain and parasitic poles in the loop filter
 - Excess loop delay
- With minor modifications
 - Flash ADC offsets
- Great design and educational value
- Highly recommended !

Circuit Simulation Strategies

- Keep one block real all others behavioral
 - e.g loop filter real but Verilog-A ADC, DAC,DEM
 - Isolates ``gross" problems
- Two blocks real others Verilog-A
 - Enables debug of ``interface" issues
- MUST run the complete design at the transistor level
 - Many problems are often subtle and only show up at this level

$\Delta\Sigma$ ADC : Simulations

- Inband SNDR
 - How to calculate this ?
 - How long should I simulate ?
- Realized NTF
 - As opposed to intended NTF
- Realized STF
 - Especially in CT modulators
- Device Noise

Simulating Inband SNDR in $\Sigma\Delta$ ADCs

Moral : Must window data even if input tone lies on a bin

How many samples do I need ?

- Record Length = Number of FFT bins = N N
- Number of bins in the signal band : $\frac{1}{2OSR}$
- Input signal + 2 harmonics (Hann): 9 bins
- DC Offset : 2 bins

Estimating noise from $\left(\frac{N}{2OSR} - 11\right) \approx 15$ bins $\Rightarrow N \approx 52 \text{ OSR samples}$

Thumbrule : Choose N to be **atleast** 64 OSR

$\Delta\Sigma$ ADC : Simulations

- Inband SNDR
 - How to calculate this ?
 - How long should I simulate ?
- Realized NTF
 - As opposed to intended NTF
- Realized STF
 - Especially in CT modulators
- Device Noise

What NTF do I have ?

- NTF is the all important loop parameter
 Deviates too much from the designed → trouble
- NTF → easy to determine MSA using high level model

 $V(z) \approx U(z) + NTF(z)E(z)$ $PSD(v) = PSD(u) + |NTF|^2 PSD(e)$

Estimating NTF

Eyeballing the PSD → misleading

 $V(z) = STF U(z) + NTF \{V(z) - Y(z)\}$ exactly

"Error" is in thinking of this as white noise

Estimated NTF

Another Example

- Nominal NTF = $(1 z^{-1})^2$
 - One with unintended feedback delay of $0.1T_s$

$\Delta\Sigma$ ADC : Simulations

- Inband SNDR
 - How to calculate this ?
 - How long should I simulate ?
- Realized NTF
 - As opposed to intended NTF
- Realized STF
 - Especially in CT modulators
- Device Noise

RF Analyses in ADC Designs ?

- Typical RF designer's arsenal
 - Periodic Steady State (PSS)
 - Periodic AC (PAC)
 - Periodic Transfer Function (PXF)
 - Periodic Noise (Pnoise)
- Why/where are they relevant in ADC design ?

RF Analyses in ADC Designs ?

• PSS, PAC, PXF, Pnoise

- Pertain to systems described by linear differential equations with periodically time varying coefficients
- Linear networks with periodic switching
- Why are they important ?
 - All ADCs aim to be Linear Periodically Time Varying (LPTV) (if quantization noise is zero)

LPTV Systems

- Time domain analysis time consuming – Especially with noise
- Frequency domain analysis of LPTV systems
 - Yields certain kinds of insight
 - Now supported by several commercial simulators
 - Powerful and fast analysis tool
 - Helps to know "what is going on" behind these methods

Linear Time Invariant Linea

LTV System

$$(t) = \int_0^\infty h(t, t - \tau) x(t - \tau) d\tau$$
$$x(t) = e^{j\omega t}$$
$$t) = \int_0^\infty h(t, t - \tau) e^{j\omega(t - \tau)} d\tau$$

$$= e^{j\omega t} \int_0^\infty h(t, t - \tau) e^{-j\omega \tau} d\tau$$
$$= e^{j\omega t} H(j\omega; t)$$

Time Dependent Frequency Response

$$\begin{aligned} \mathsf{LPTV} \ \mathbf{Systems} \\ H(j\omega;t) &= \int_0^\infty h(t,t-\tau)e^{-j\omega\tau}d\tau \\ H(j\omega;t+T_s) &= \int_0^\infty h(t+T_s,t+T_s-\tau)e^{-j\omega\tau}d\tau \\ &= \int_0^\infty h(t,t-\tau)e^{-j\omega\tau}d\tau = H(j\omega;t) \\ H(j\omega;t+T_s) &= H(j\omega;t) = \sum_{l=-\infty}^{l=\infty} H_l(j\omega)e^{jl\omega_s t} \\ \text{Input} : x(t) &= e^{j\omega t} \\ y(t) &= \sum_{l=-\infty}^{l=\infty} H_l(j\omega)e^{j(\omega+l\omega_s)t} \end{aligned}$$

Input at ω causes components at $\omega \pm (0, 1, 2, \cdots)\omega_s$ Periodic AC Analysis yields $H_l(j\omega)$ for any desired lPAC Analysis

Output at ω due to components at $\omega \pm (0, 1, 2, \dots) \omega_s$ Periodic XF Analysis yields $H_l(j\omega)$ for any desired lPXF Analysis

Noise in LPTV Systems

- Frequency translation is an inherent property of LPTV systems
- Same applies to noise

Noise at ω due to components at $\omega \pm (0, 1, 2, \cdots) \omega_s$ **PNoise** finds noise accounting for freq translation

$\Delta\Sigma$ ADC : Simulations

- Inband SNDR
 - How to calculate this ?
 - How long should I simulate ?
- Realized NTF
 - As opposed to intended NTF
- Realized STF
 - Especially in CT modulators
- Device Noise

Linear Model : CT DSMs

Determining the STF

Atleast two ways of doing this

- A : Put in a sinewave, run the modulator, measure the strength of the output sinewave, repeat for another frequency
 - Takes very long, if high resolution of frequency is needed
 - Amplitude of the tone has to be carefully chosen
 - The "true" STF, accounting for the quantizer gain
Determining the STF

- **B:** Periodic Transfer Function (PXF) analysis
 - Replace quantizer by a sampler
 - The system is LPTV
 - Run PSS/PXF
 - Yields the STF assuming unity quantizer gain

Periodic XF Analysis PSS Beat Frequency (12) 400K	→ Sampling Rate
Sweeptype default Sweep is currently absolute Output Frequency Sweep Range (Hz) Start-Stop Start Image: Constraint of the start of t	$\rightarrow 0 - f_s/2$
Add Specific Points Sidebands Maximum sideband Maximum sideband When using shooting engine, default value is 7. Output Voltage Positive Output Node Image Probe Negative Output Node Image	To find STF in the range $\pm \left([0 - \frac{f_s}{2}] + \{0, 1\} f_s \right)$
Specialized Analyses Sampled Threshold Crossing Direction Signal Threshold Crossing Direction probe /cllš Select I voltage /gndă Select I Sampled Optional Parameters: Sample Delay I Additional Timepoints I Sample Delay	 Only the output samples at clock rising edge are relevant

$\Delta\Sigma$ ADC : Simulations

- Inband SNDR
 - How to calculate this ?
 - How long should I simulate ?
- Realized NTF
 - As opposed to intended NTF
- Realized STF
 - Especially in CT modulators
- Device Noise

Transient Noise Analysis

• Conceptually straightforward

- Noise currents added in parallel with device currents
 - Spectral density can be bias dependent

Transient Noise Analysis

- Noise updated at every simulation step
 White and colored noise can be modeled
- Results need careful interpretation
- Very expensive with respect to simulation time
 - Can run many instances simultaneously
 - Use only as needed

Simple Example

Simple Example

[P, f] = pwelch(0.01*vn,rectwin(Nfft),0,Nfft,fs)

Second Order CTDSM Example

400 kHz sampling rate Not amenable to periodic noise analysis

Delta Sigma Modulator Noise

- In-band noise dominated by thermal and 1-by-f noise
- Quantization noise should be made lower by at least 12-15 dB
- Virtually all noise should come from the loop filter

Opamp Schematic

Comparator and Clock Waveforms

Delta Sigma Example

$\Delta\Sigma$ Noise Quick Simulation

- Transient noise
 - Computationally expensive
- Periodic Noise is very fast
 - Delta Sigma ADCs do not lend themselves easily to periodic noise analysis (PNOISE)
 - PSS difficulties due to the quantizer

CTDSM : Using PNoise

Replace comparator with Sample & Hold CTDSM becomes LPTV

Pnoise Setup

Periodic Noise Analysis PSS Beat Frequency (Hz) 400K	LPTV fundamental frequency
Multiple phoise	
Sweeptype default Sweep is currently absolute Output Frequency Sweep Range (Hz) Start-Stop Start-Stop Start Image: Start <th></th>	
Sidebands Maximum sideband10 When using shooting engine, default value is 7.	Aliases noise from 10 sidebands
Output Positive Output Node /opi Select	
Negative Output Node /onč Select	
Input Source voltage Input Voltage Source /V2 Select	
Reference Side-Band f(in) = f(out) + refsideband * fund Enter in field Image: Comparison of the second sec	

Delta Sigma Example with PNoise

Summary

- Data Converter Overview
 - Simulation in Flash and Pipeline ADCs
- Spectral analysis in ADCs
 - Windowing
- Simulation Techniques for $\Delta\Sigma$ ADCs
 - In-band SNR estimation
 - Determining NTF
- Use of RF analyses in data converter simulations
 - STF and Noise simulations

Closing Remarks

- Every ADC/DAC architecture
 → own design and simulation challenges
- Analysis and design iteration
 - \rightarrow behavioral models/simulation
- Design debug
 - \rightarrow mixture of tx level and macromodels
- Innovation

→e.g : exploit RF analyses of commercial tools to reduce simulation times

References

- General Data Converter Reading
 - M. Gustavsson, J. Wikner & N. Tan, "CMOS Data Converters for Communications", *Springer*
 - R. Jacob Baker, "CMOS : Mixed Signal Circuit Design", IEEE Press
- Flash and Pipeline ADCs
 - R.van de Plassche : "CMOS Integrated Analog-to-Digital and Digitalto-Analog Converters", *Springer*
- Delta Sigma Data Converters
 - R.Schreier, S.Norsworthy and G.Temes, "Delta-Sigma Data Converters : Theory, Design and Simulation", IEEE Press
 - R.Schreier and G.Temes, "Understanding Delta-Sigma Data Converters", *Wiley*
 - J.Cherry, "Theory, Practice, and Fundamental Performance Limits of High-Speed Data Conversion Using Continuous-Time Delta-Sigma Modulators", PhD Dissertation <u>http://www.dissonance.com</u>

References

- RF analyses background
 - K.Kundert, "Introduction to RF Simulation and its Applications", *IEEE Journal of Solid State Circuits, Sept 1999.*
- Verilog-A Macromodels
 - White papers at http://www.designers-guide.org
- Macromodeling Tools
 - MATLAB and Simulink
 - The Schreier Delta-Sigma Toolbox
 - CPPSim <u>http://cppsim.com</u>