ISSCC 2013 Tutorial

Circuit Design using FinFETs

Bing Sheu, Ph.D. & IEEE Fellow Director, at R&D TSMC

email: bing_sheu@tsmc.com

February 17, 2013

Acknowledgment

Special thanks to the following people for contribution of content: Chih-Sheng Chang, Clement Wann; Ken Wang; L.J. Tyan; Kuo-Ji Chen, Ming-Hsiang Song; Tommy Chen, H.J. Liao; Yung-Chow Peng; and Chris Huang; from several groups inside TSMC R&D: Advanced Technology Research; Design Flow; Layout; Library & IPs, I/O & ESD; Memory Design; High-Speed Circuits; and especially to CTO/VP Jack Sun & DTP VP Cliff Hou.

SPICE BSIM-CMG Modeling slides are provided by **Chair-Professor Chenming Hu** at University of California, Berkeley.

Assistance from **Ali** Sheikholeslami at University of Toronto for ISSCC Tutorial Program, and from **Stephen** Kosonocky of AMD and **Victor** Zyuban of IBM at Energy-Efficient Digital Track is highly appreciated.

Outline

• 1. <u>Technology Considerations</u>

- 2. Spice Modeling
- 3. Design Methodology and CAD Tools
- 4. Digital Design
 - Standard Cells, Layout
 - IO and ESD
- 5. SRAM
- 6. Analog & Mixed-Signal, RF
- 7. Conclusion

References

Key FinFET Benefits: Electrostatics

Modified (re-wording) from <u>Ref: J. Kavalieros, Technology Short Course,</u> <u>VLSI Symposium, 2008</u>

Multi-Gate Simulation Structures

• SOI substrate was used for this simulation study

FinFET Electrostatics Simulation -1

 With more gate control, a wider fin width could be used to achieve same DIBL (drain-induced barrier lowering)

FinFET Electrostatics Simulation -2

 Traditional channel doping could also be used to further improve DIBL

22/20nm FinFET Device

- High performance 22/20nm FinFET with
 - Ion (n/p)= 1200/1100 uA/um at Vdd=1V, Ioff=100nA/um
 - DIBL (n/p)=100/120 mV/V
 - Sub-threshold swing ~ 80mV/dec

Ref: C. C. Wu, paper 27.1, IEEE IEDM, 2010

32/28nm SoC FinFET

• 32/28nm SoC FinFET technology with

- Low, medium and high Vt transistors follow the same trend line
- Multi-Vt techniques do not compromise FinFET performance

Ref: C.-C. Yeh, paper 34.1, IEEE IEDM, 2010

FinFET Parasitic Fringing Capacitance

- FinFET parasitic fringing capacitance could be higher than that of planar MOSFET due to extra gate-to-S/D coupling area (C regions)
- The extra coupling (area of C) could be greatly reduced with tight fin pitch

 TCAD simulation showed that with an aggressive fin pitch scaling, the 3D FinFET fringing capacitance penalty could be greatly reduced.

Pitch Scaling with Spacer Patterning

 32/28nm tool used to demonstrated 50nm fin pitch by spacer pitch halving technique.

Ref: C.-Y. Chang, paper 12.2, IEEE IEDM, 2009

Equivalent Scaling

- More current in the same layout footprint
- Weff > fin_pitch

More Current per Footprint

 Increase effective width for a given footprint: increase H_{Fin} and/or reduce fin pitch 14 of 81

FinFET Random Doping Fluctuation

- With the same doping, simulation showed that FinFET structure can reduce RDF by ~10%
- With a lower doping, the RDF can be further reduced

Outline

- 1. Technology Considerations
- 2. Spice Modeling
- 3. Design Methodology and CAD Tools
- 4. Digital Design
 - Standard Cells, Layout
 - IO and ESD
- 5. SRAM
- 6. Analog & Mixed-Signal, RF
- 7. Conclusion

References

BSIM SPICE Models

558

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-22, NO. 4, AUGUST 1987

BSIM: Berkeley Short-Channel IGFET Model for MOS Transistors

BING J. SHEU, MEMBER, IEEE, DONALD L. SCHARFETTER, FELLOW, IEEE, PING-KEUNG KO, MEMBER, IEEE, AND MIN-CHIE JENG

Berkeley Short-channel IGFET Model

- 1997: BSIM3 became first industry standard MOSFET model for IC simulation
- BSIM3, BSIM4, BSIM-SOI used by hundreds of companies for design of ICs worth half-trillion U.S. dollars
- BSIM models of FinFET and UTBSOI are available & free

BSIM-CMG

- Core Model
 - Surface Potential Equation
 - Drain Current
 - Capacitance Model
- Real Device Effects
- Symmetry / Continuity Tests

 Model Availability: A versatile model for double-gate, triplegate, even cylindrical gate FET. Passed Industry FinFET
 Standard balloting in Jan. 2012. Available now.

 BSIM-IMG is a related model for Ultra-Thin-Body SOI technology (used by ST Microelectronics). Available now.

Common-Multi-Gate Modeling

- Common Multi-gate (BSIM-CMG):
 - All gates tied together
 - Surface-potential-based core I-V and C-V model
 - Supports double-gate, triple-gate, quadruple-gate, cylindrical-gate; Bulk and SOI substrates

Surface Potential Core

• Poisson's equation inside the body can be written as $(V_{ch}$ is channel potential)

- Body doping complicates the solution of the Poisson's equation.
- Perturbation approach is used to solve this problem.

Ref. M. Dunga et al., IEEE TED, No. 9, 2006; M. Dunga, et al., VLSI 2007;Mohan Dunga, PhD Dissertation, UC Berkeley.Slide provided by Prof. C. Hu

Drain

N₄

n+

Tsi

●Vq

Source

n+

Surface Potential Calculation

 Model matches 2D TCAD very well without fitting parameters for different body doping concentrations

Core Drain Current Model

Drain Current (Pao-Sah, No charge sheet approximation)

$$Id = \mu \cdot \frac{W_{eff}}{L_{eff}} \cdot \left[\frac{Q_{is}^2 - Q_{id}^2}{2C_{ox}} + V_t \cdot \left(2 - \frac{2Q_0}{2Q_0 + Q_{is} + Q_{id}} \right) (Q_{is} - Q_{id}) \right]$$
$$Q_0 = 2Q_B + 5V_t C_{si}$$

Drain Current in Volume Inversion

 The proportionality of inversion carrier density and hence current to the body thickness in sub-threshold region for un-doped/lightlydoped channel is captured.

Core Capacitance Model

• Model inherently exhibits symmetry

$$C_{ij} = C_{ji} @ V_{ds} = 0 V$$

- Model overlies TCAD results
 - No tuning parameters used
- Accurate short channel behavior RF Design

Symmetry / Continuity Tests

PMOS FinFET 35nm to 10um

NMOS FinFET 30nm to 10um

Global fitting with 30nm-10um FinFETs

Temperature Model Verified for FinFET

30 of 81

Outline

- 1. Technology Considerations
- 2. Spice Modeling

• 3. Design Methodology and CAD Tools

- 4. Digital Design
 - Standard Cells, Layout
 - IO and ESD
- 5. SRAM
- 6. Analog & Mixed-Signal, RF
- 7. Conclusion

References

FinFET Design Issues

- Width Quantization
 - Significantly better layout density for high fin height process [1]
 - High driving strength cell has larger area reduction [1]
 - Four QOR indexes to evaluate quantization [2]
- L_q and V_{th} biasing replacement
 - Adjust V_{th} through Gate work function engineering [3]
 - Adjust L_{eff} through gate-drain/source overlap engineering [4]
- Implementing weak feedback devices in latches and keepers
 - Need to use S/D underlap to weaken feedback devices [4]
- Quantization effect on Leak estimation
 - Worse leaking fin dominant leakage distribution [5]
- Reduced variation by larger W_{eff} in the same footprint [6]

31 of 81

FinFET Parasitic Modeling

- Parasitic Capacitance
 - Raised S/D reduce Rpara but increase Cpara [7]
 - Outer fringe cap in FinFET is larger compared to planar counterparts [7]
 - Parasitic capacitance modeling [8]
- Parasitic Resistance
 - Larger gate resistance [9]
 - S/D parasitic resistance modeling [10]
 - Rpara reduces Ion by ~5% [11]

Challenges in Parasitic Extraction

- Complex 3D transistor structure
- More R and C components
- 3D RC extraction for critical circuits but needs run-time improvement
- 2.5D RC extraction enhancement for accuracy is required

Source of Variations in FinFETs

- Variation in threshold voltage
 - Fin Thickness and Fin Height [12, 16]
 - LER and WER [12–14]
 - LER is major variation source in lightly doped channel [13,14]
 - Higher trap density for HKMG (10¹⁹/eVcm³ for HfO₂) [15]
- Variation in mobility & Work function variation (WFV)
 - Surface roughness scattering [16]
 - Found WFV of 16meV in FinFET with Lg = 23nm [17]
 - WFV dominant TiN metal gate FinFET V_{th} variation [18–20]
 - WFV due to Grain-Orientation-induced Quantum Confinement [21]
- Variation on I_D
 - Rpara variation correlates closely with Tfin variation [22]

EDA Ecosystem Assessment -1

Note: Content To be filled by Attendees.

		EDA Tool	Tech File/model/PDK	Comment
Spice Simulation		****	****	 * Need accurate BSIM-CMG model * To drive SPICE simulators to support the model in Q2
MEOL Model + RC Extraction	2.5D	*****	****	 * To define MEOL targets and corners * Need accurate FinFET MEOL handing
	3D	*****	****	 * Need to clarify device cap partition * Tools need to handle R in addition to C
DRC		*****	****	* DRC commands to handle fin quantization and FinFET related rules
LVS/LPE		****	****	* Need to consider FinFET specific parameters and LDE spec

$\star \star \star$ means quite good.

EDA Ecosystem Assessment -2

Note: Content To be filled by Attendees

	EDA Tool	Tech File/model/PDK	Comment
RTL Synthesis	****		* No change perceived
Floorplan/Placeme nt	****		* Need to drive CAD tool to honor FinFET region or FinFET pitch rule
Routing	*****	*****	* FinFET std cell pin access *16 /14 nm DPT rules
Static Timing Analysis	*****		* Need to validate CAD tool accuracy of timing model and pin cap model
Custom Design Tool/PDK	****	****	* Custom tools need to consider FinFET quantized rule and connectivity * PDK needs correct-by-construction Pcells and FinFET specific MOS analyzer and LDE utility

$\star \star \star$ means quite good.
Design Methodology Assessment

Note: Content To be filled by Attendees.

	Readiness	Challenges	
General	*****	* Quantization optimization for PPA (IP sizing, clock tree balancing, etc)	
DFM	****	* Modeling for random yield(CAA in 3D structure), dummies, LPC (fin width/space, OD/PO rounding, etc), CMP (3D structure)	
Low Power	****	Effective low-power design approaches: * Optimal operating voltages for best power/area * Power gating by header/footer design * Multi-Vt and gate bias approach (?)	
Reliability	*****	* Electro-migration (EM), self heating	
Variation	*****	* Geometry variation vs random doping	

$\star \star \star$ means quite good.

FinFET vs. Planar: Pros & Cons -1

	Pros	Cons	Potential Solutions
Std. Cells	 a. High drive current b. Low subthreshold leakage current c. Better performance on low-V operation 	 Quantized OD has less flexibility on rise/fall balance and sizing optimization On grid fin constraints layout routing capability Fin structure causes worse heat dispatch 	 Enlarge cell size to improve cell balance
I/O & ESD	 a. High drive current per footprint, enhancing I/O area density 	 Uni-gate direction causes 2-set IO (V & H) effort Difficult for ≥2.5V IO Degraded diode ESD Low ESD self-protection 	 Cascade P/NFET or use VMOS Large size or novel circuit

FinFET vs. Planar: Pros & Cons -2

	Pros	Cons	Potential Solutions
SRAM	 a. Higher effective cell current for speed b. Less Vt mismatch c. Better Ion/Ioff ratio for longer BL length 	 Quantized device width limits the Vccmin optimization window 	 Enlarge bit cell, or use design assist
Analog	 a. Better gain and matching b. Better headroom 	 Metal/Via EM- tolerance degradation More sensitive to density control 	 With constrained layout style, or time interleaving design to reduce Metal conductance Density control

Outline

- 1. Technology Considerations
- 2. Spice Modeling
- 3. Design Methodology and CAD Tools
- 4. Digital Design
 - Standard Cells, Layout
 - IO and ESD
- 5. SRAM
- 6. Analog & Mixed-Signal, RF
- 7. Conclusion

References

FinFET Cross-Section

Layout Examples

Quantization Impact on Std Cells

- Fin quantization performance impact is 0.7% in average for 200 standard cells
- Worst cell speed degradation is 5.9%, due to lack of single Fin device
- With single Fin, degradation can be reduced to 2.6%

I/O & ESD for Planar CMOS -1

- Diode protect and selfprotect ESD network scheme available
- Gated diodes for general purpose ESD protection to achieve
 - High ESD/um² & high cross domain CDM level

I/O & ESD for Planar CMOS -2

- STI diodes for specific ESD protection including
 - High ESD/fF (for low-cap/ ultra high speed) & high Vbd (for >1.8V interface protection)
- Power clamps (RC-trigger ESD to cover 0.85/1.8/2.5/3.3)
- Snapback NMOS available for input tolerant ESD protection

High Voltage I/O in Planar CMOS -1

- Thick oxide devices optimized for low voltage interface circuit (1.8V and below)
- For >2.5V I/O, design with 1.8V transistor cascode approach or HVMOS approach

3.3V interface circuit using 1.8V transistor cascode approach

High Voltage I/O in Planar CMOS -2

3.3V interface circuit using drain-extend HVMOS approach

FinFET I/O & ESD Design Challenge

• I/O design and implementation

- Cascode approach only for high voltage I/O design, no drain extend HVMOS available in FinFET
- No native/low-Vt IO device for low-Vccmin I/O level shifter and low Vt-drop pass gate for input high voltage tolerant circuit
- For uni-IO gate direction required for FinFET process, will need
 2 sets of I/O for ring type placement
- ESD protection
 - Snapback-type ESD protection not available
 - Diode efficiency degradation due to high ESD current density

Gated Diode TCAD ESD Simulation

- Expect ESD level for FinFET to degrade by 20~40% due to increased current density & joule heating
- Need to implement ESD devices with bigger size to meet ESD spec.

Joule Heat

ESD Network for FinFET I/O

- All FinFET devices protect by diodes and active clamp
- No snapback ESD in FinFET I/O

FinFET ESD Devices

Clamp type	Potential FinFET solution	Applications
Diode	Gated diode	CMOS push-pull GPIO Core/IO CML diver Cross domain CDM
	STI diode	Low-C for Gbps serdes/RF High voltage (>2.5V)
none-snapback MOS- driver	Resistor protected P/NMOS	GPIO CML driver
Power clamp (core voltage)	RC trigger with Fin- core large transistor	General purpose core voltage clamp
Power clamp (IO voltage)	RC trigger with Fin- IO large transistor	General purpose IO voltage clamp
Power clamp (High voltage, >2.5V)	RC trigger with Fin- cascode large transistor	High voltage interface PMU

52 of 81

Outline

- 1. Technology Considerations
- 2. Spice Modeling
- 3. Design Methodology and CAD Tools
- 4. Digital Design
 - Standard Cells, Layout
 - IO and ESD

• 5. <u>SRAM</u>

- 6. Analog & Mixed-Signal, RF
- 7. Conclusion

References

Challenges in Scaling CMOS SRAM

- The most challenge is SCE (Short Channel Effect) control
 - Requires heavy channel doping (>10¹⁸ cm⁻³) and heavy superhalo implants to control surface leakage
 - Side effects of the heavy doping
 - Carrier mobility is severely degraded due to impurities scattering
 - High transverse electric field in the device "ON" state
 - The increased depletion charge density results in a larger depletion capacitance hence a larger sub-threshold slope.
 - Off-state leakage current increase due to band-to-band tunneling between the body and drain.
- Vt variation caused by Random Dopant Fluctuation (RDF) is another concern for planar CMOS

FinFET Benefits for SRAM Design

- SCE can be effectively suppressed by using thin-body transistor structure like FinFET: less gate length variability
- The Lg can scale down to 10nm region without using heavy channel/body doping
- Lightly-doped channel gives rise to
 - Lower transverse electrical field in the "ON" state
 - Reduced impurity scattering
 - Higher carrier mobility (2X higher)
 - Reduced depletion charge & capacitance lead to a steep subthreshold slope
 - Both depletion and junction capacitances are effectively eliminated, which reduce the BL capacitive load.
 - Reduce random dopant fluctuation effects
- Strain benefit will be greater (<u>Ref: ITRS, 2007</u>)

Variation point of View on SRAM

- Less RDF (<u>Random Dopant Fluctuation</u>)
- More Sensitive to geometry variation
 - Fin height, width, edge roughness
 - PO patterning variation since topology is rough
 - Implies more RDR rules for CD control

Fin Edge Effect on Variation -1

Fin width =10nm Fin pitch = 40nm Fin height = 30nm

Ref: T. Yamashita, et. al , (IBM) "Sub-25nm FinFET with Advanced Fin Formation and Short Channel Effect Engineering", VLSI Symp., 2011

Fin Edge Effect on Variation -2

Fin Height Variation -1

- Global variation > local variation for FinFET (Seems good news for SRAM designer)
- Fin Height Variation (FHV) contribute a major portion of global variation

global variation > local variation

Fin Height Variation -2

<u>Ref: P. Dobrovollny, et al., "Impact of fin height variations on SRAM yield",</u> <u>IMEC</u>

59 of 81

SNM and WTP(WM) for FHV -1

- FHV dominates the overall inter-die (global) variation
- At the product level intra-die (local) variation limits the max. size of SRAM capacity, due to the VCCmin target.

Ref: P. Dobrovollny, et al., "Impact of fin height variations on SRAM yield", IMEC

SNM and WTP(WM) for FHV -2

SNM and WTP(WM) for FHV -3

FHV contributes the same weighting as local variation

Challenges on SRAM Cell Design

Quantization fin

- For minimum area: α- and β-ratio = 1, a naturally readpreferred bit cell cause VCCmin issue
- For low VCCmin cell: enlarge β -ratio = 2, cost area penalty

Ref: paper 13.1 (Intel), ISSCC, 2012

High Density (HDC): 0.092 um2 1:1:1 PU:PG:PD

Low Voltage (LVC): 0.108 um2 1:1:2 PU:PG:PD

Surface Orientation for Vccmin -1

- Electron mobility along (100) plane is higher than along (110)
- PD device rotate to (100) to increase PD strength and also beta ratio
- Side effect is lithography challenge and may result in increased process variation

beta ratio = 1

beta ratio = 2

Up sizing PD can greater improve read SNM

Wafer orientation

Surface Orientation for Vccmin -2

Beta ratio >1

Strength PD > PG

Ref: Zheng Guo, et al., "FinFET-based SRAM design", ISPED, 2005

Write-Assist : VDD Collapse

Write-Assist : Negative BL

Write driver with boosted control and attenuation

Ref: "Negative bit-line", (IBM), ISSCC, 2011

67 of 81

Example of Back-Gate SRAM Design

• Use back-gate control to improve the read-SNM

Ref: Zheng Guo, et al. (UC Berkeley), "FinFET-based SRAM design", ISPED, 2005.

Outline

- 1. Technology Considerations
- 2. Spice Modeling
- 3. Design Methodology and CAD Tools
- 4. Digital Design
 - Standard Cells, Layout
 - IO and ESD
- 5. SRAM
- 6. <u>Analog & Mixed-Signal, RF</u>
- 7. Conclusion
- References

Key Device Requirements

- Headroom to support cascode structure
 - Vt < 0.2* Vdd
- Core device Ft to support 60GHz RF applications
 - Ft > 250Ghz
- Low gate resistance to minimize flicker noise
 - Sheet resistance < 50 Ohm</p>
- Mismatch of IO device
 - IAVtgm < 5mv-um
 - Gain > 200 (or 46dB)
- Noise @ Core Lmin
 - < 30 uV² um²/Hz @ 1Hz
- Metal/Via EM handling capability close to device driving capability for driver applications

Pros & Cons on Analog/RF Circuits

Pros:

- Better matching
- Higher current driving capability
- Lower gds \rightarrow higher gain
- Smaller Vt \rightarrow larger headroom
- Effectively no body-effect
- Lower leakage

Cons:

Impact high frequency application (Ft)

- Higher S/D resistance degrade gm
- Higher Cco

Device EM handling capability

Passive components (diode, resistor) availability

Loop shape layout not allowed

Behavior not as usual

Self-Heating causes higher local temperature and degrades
 EM performance

Assessed EM Limitation on FinFET

- Via EM limits the maximum allowable power delivery from single FinFET transistor
 - Degradation for each new generation:
 - ♦ Via EM capability drop ~0.7X
 - Device driving capability increase ~ 1.25X
- Possible solutions
 - Shorter wire length
 - Lower local self-heating
Fin/PO/OD Local Density Impact

- With HKMG, device uniformity shows higher variation in traditional layout style
 - MG (metal gate) Hi-Resistor array with center effect
 - Affected by STI dishing due to low OD density
 - MOS array with edge effect
 - Edge devices of MOS array with higher variation due to poly gradient between array and surrounding patterns
 - Interference among analog blocks due to each with different and wide spreading density on poly and OD
- Fin density is likely new factor to impact device uniformity
- New layout style and flow needed to minimize this effect
 - Gradient control on density from array to surrounding patterns

Design Flow Impact -1

- Quantized Fin
 - Limit the flexibility of IP porting
 - Due to discrete width
 - Fin on track limits the flexibility on analog block floor plan
 - Need CAD tool to optimize the quantized width and off-grid issue
 - Minimum 2-Fin transistor will limit the flexibility of low power design
 - Single-Fin transistor is desirable to have.

Design Flow Impact -2

Fin/PO/OD density control flow to minimize the device variation

Challenges & Opportunities

• FinFET vs. Planar CMOS on key analog parameters

Items	Opportunities	Challenges
Headroom	Vt 50~100mv lower	Device breakdown voltage
Mismatch	~ 1/2	Edge Fin variation Variation due to smaller OD
ldsat	20~30% higher	Via and Metal EM limitation Self heating
Ft	Higher gm	Higher Cco S/D serial resistance Gate serial resistance
Gain	~ 10dB higher	Smaller max. Lg

Outline

- 1. Technology Considerations
- 2. Spice Modeling
- 3. Design Methodology and CAD Tools
- 4. Digital Design
 - Standard Cells, Layout
 - IO and ESD
- 5. SRAM
- 6. Analog & Mixed-Signal, RF
- 7. <u>Conclusion</u>
- References

Conclusion

• FinFET design has been proven at 22 nm node

- See publications from Intel Corporation at 2012 ISSCC Conference and 2012 VLSI Technology/Circuits Symposia
- Many Intel product announcements in 2012, at 22 nm node

FinFET design is gaining popularity

 FinFET design will be the norm at 16 / 14 nm node, and 10 nm node

• For IC foundry, FinFET

- Problem study is identified
- Solution is identified, too
- The differences between FinFET and planar CMOS need to be taken care
- Good progress by ecosystem: EDA tools and IP vendors

References -1

- 1. Alioto, M., "Comparative Evaluation of Layout Density in 3T, 4T, and MT FinFET Standard Cells," *IEEE T-VLSI*, vol.19, May 2011
- Rao, R., et al., "Evaluation and Optimization of FinFET Quantization Error in Porting a Design from Planar Silicon Technology," *SOI Conference*, pp.49-50, Oct. 2007
- 3. Roy, K.; et al., "Device/circuit interactions at 22nm technology node," *DAC*, pp.97-102, July 2009
- 4.. Tawfik, S.A.; et al., "Manufacturable low-power latches for standard tieddouble-gate FinFET technologies," *MWSCAS* . pp.471-474, Aug. 2009
- 5. Jie Gu; et al., "Statistical Leakage Estimation of Double Gate FinFET Devices Considering the Width Quantization Property," *IEEE T-VLSI*, vol.16, pp.206-209, Feb. 2008
- 6. Itoh, K., "Device-conscious circuit designs for low-voltage nanoscale CMOS LSIs," *Mixed Design of ICs and Systems (MIXDES),* pp.21-26, June 2010
- 7. Manoj, C.R., et al., "Impact of Fringe Capacitance on the Performance of Nanoscale FinFETs," *IEEE EDL*, vol.31, pp.83-85, Jan. 2010
- 8. Agrawal, S., et al., "A Physical Model for Fringe Capacitance in Double-Gate MOSFETs," *IEEE T-ED*, vol.57, pp.1069-1075, May 2010

References -2

- 9. Wen Wu; et al., "Gate resistance modeling of multifin MOS devices," *IEEE EDL*, vol.27, pp. 68- 70, Jan. 2006
- 10. Dixit, A., et al., "Analysis of the parasitic S/D resistance in multiple-gate FETs," *IEEE T-ED*, vol.52, pp. 1132- 1140, June 2005
- 11.Agrawal, S., et al., "A Physical Model for Fringe Capacitance in Double-Gate MOSFETs With Non-Abrupt Source/Drain Junctions and Gate Underlap," *IEEE T-ED*, vol.57, pp.1069-1075, May 2010
- 12. Xin Sun, et al., "Variation Study of the Planar Ground-Plane Bulk MOSFET, SOI FinFET, and Trigate Bulk MOSFET Designs," *IEEE T-ED*, vol.58, pp.3294-3299, Oct. 2011
- 13. E. Baravelli, et al., "Impact of line-edge roughness on FinFET matching performance," *IEEE Electron Devices, vol. 54, pp. 2466–2474,* Sep. 2007
- 14. E. Baravelli, et al.,"Impact of LER and random dopant fluctuations on FinFET matching performance," *IEEE Nanotechnol., pp. 291–298,* May 2008.
- 15. Bennamane, K., et al., "Static and low frequency noise characterization of FinFET devices," ULIS Conference, pp.39-42, March 2009

References -3

- 16. Jae Woo Lee, et al., "Experimental analysis of surface roughness scattering in FinFET devices," *IEEE ESSDERC,* pp.305-308, Sept. 2010
- 17. O'uchi, S., et al., "Characterization of metal-gate FinFET variability based on measurements and compact model analyses," *IEDM*, pp.1-4, Dec. 2008
- 18. Matsukawa, T., et al. , "Comprehensive analysis of variability sources of FinFET characteristics," *VLSI Tech Symposium*, pp.118-119, June 2009
- 19. Endo, K.; et al., "Variability Analysis of TiN Metal-Gate FinFETs," *Electron Device Letters, IEEE*, vol.31, pp.546-548, June 2010
- 20. H. Cheng, et al., "Random work function variation induced threshold voltage fluctuation in 16-nm bulk FinFET devices with high-k-metal-gate material," *Computational Electronics (IWCE)Workshop*, pp.1-4, Oct. 2010
- Rasouli, S.H., et al., "Grain-Orientation Induced Quantum Confinement Variation in FinFETs and Multi-Gate Ultra-Thin Body CMOS Devices and Implications for Digital Design," *IEEE T-ED*, vol.58, pp.2282-2292, Aug. 2011
- 22. Matsukawa, et al., "Fluctuation Analysis of Parasitic Resistance in FinFETs With Scaled Fin Thickness," *IEEE EDL*, vol.30, pp.407-409, April 2009