Noise Analysis in Switched-Capacitor Circuits

Boris Murmann Stanford University murmann@stanford.edu February 2011

Abstract

Switched-capacitor (SC) circuits are ubiquitous in CMOS mixed-signal ICs. The most fundamental performance limitation in these circuits stems from the thermal noise introduced by MOSFET switches and active amplifier circuitry. This tutorial reviews hand analysis techniques that allow the designer to predict the noise performance of switched-capacitor circuits at various levels of complexity. The material presented in this course focuses on practical examples ranging from basic passive and active track-and-hold circuits, integrators and SC delta-sigma modulators. Simulation examples are included to complement and verify the theoretical treatment.

Outline

- Motivation and Overview
- Preliminaries
- Circuit Examples
 - Elementary track-and-hold circuit
 - Charge redistribution stage
 - Delta-sigma modulator

Example: Delta-Sigma Modulator

Kyehyung Lee, Jeongseok Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, and G.C. Temes, "A Noise-Coupled Time-Interleaved Delta-Sigma ADC With 4.2 MHz Bandwidth, 98 dB THD, and 79 dB SNDR," IEEE J. Solid-State Circuits, vol.43, no.12, pp. 2601-2612, Dec. 2008.

Example: Pipeline ADC

S. Devarajan, L. Singer, D. Kelly, S. Decker, A. Kamath, P. Wilkins, "A 16-bit, 125 MS/s, 385 mW, 78.7 dB SNR CMOS Pipeline ADC," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3305-3313, Dec. 2009.

Example: Pipeline ADC

S. Devarajan, L. Singer, D. Kelly, S. Decker, A. Kamath, P. Wilkins, "A 16-bit, 125 MS/s, 385 mW, 78.7 dB SNR CMOS Pipeline ADC," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3305-3313, Dec. 2009.

Example: Sensor Interface

V.P. Petkov, B.E. Boser, "A fourth-order ΣΔ interface for micromachined inertial sensors," IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1602-1609, Aug. 2005.

Charge Redistribution Stages

Elementary T/H Circuit

Outline

Motivation and Overview

Preliminaries

- Circuit Examples
 - Elementary track-and-hold circuit
 - Charge redistribution stage
 - Delta-sigma modulator

Types of Noise

- "Man made noise"
 - Supply coupling
 - Substrate coupling
- "Electronic noise"
 - Technology related
 - Flicker noise caused by lattice defects
 - Fundamental
 - Thermal noise caused by random motion of carriers
 - Focus of this short course

Significance of Thermal Noise

- The "fidelity" of electronic systems is often determined by their SNR
 - Examples: Audio systems, wireless transceivers, sensor interfaces
- Electronic noise directly trades with power dissipation and speed
- Electronic noise is a major concern in modern technologies with reduced V_{DD}

$$\text{SNR} \propto \frac{V_{\text{signal}}^2}{V_{\text{noise}}^2} \propto \frac{\left(\alpha V_{\text{DD}}\right)^2}{V_{\text{noise}}^2}$$

- "Thermal Noise" or "Johnson Noise"
 - J. B. Johnson, "Thermal Agitation of Electricity in Conductors," Phys. Rev., pp. 97-109, July 1928
- Can model random current component using a noise current source i_n(t)

Statistical Model

- The power spectral density (PSD) indicates how the power of a signal is spread across frequency
- For thermal noise, the power is spread uniformly up to very high frequencies (about 10% drop at 2 THz)

Thermal Noise Power

Nyquist showed that

PSD(f) = 4kT

• The total average noise power of a resistor in a certain frequency band is therefore

$$P_n = \int_{f_1}^{f_2} 4kT \cdot df = 4kT \cdot (f_2 - f_1) = 4kT \cdot \Delta f$$

Equivalent Noise Generators

• We can model the noise using an equivalent voltage or current generator

MOSFET Thermal Noise

- The noise of a MOSFET operating in the triode region is approximately equal to that of a resistor
- In the saturation region, the thermal noise can be modeled using a drain current source with power spectral density

$$\overline{i_d^2} = 4kT \cdot \gamma \cdot g_m \cdot \Delta f$$

• For an ideal MOSFET, we have $\gamma = 2/3$

γ Parameter for Short Channels

• In moderate inversion, $\gamma \cong 1...1.5$

- A. J. Scholten et al., "Noise modeling for RF CMOS circuit simulation," IEEE Trans. Electron Dev., pp. 618-632, Mar. 2003.
- R. P. Jindal, "Compact Noise Models for MOSFETs," IEEE Trans. Electron Devices, pp. 2051-2061, Sep. 2006.

MOSFET Model in Saturation

in this short course

Noise in Circuits

- Most circuits have more than one relevant noise source
- In order to quantify the net effect of all noise sources, refer the noise sources to a single "interesting" port of the circuit
 - Usually the output or input

Output and Input Referred Noise

• H can be a continuous time or discrete time transfer function

Outline

- Motivation and Overview
- Preliminaries
- Circuit Examples
 - Elementary track-and-hold circuit
 - Charge redistribution stage
 - Delta-sigma modulator

Elementary T/H Model

Step Response

Settling Error at t = T _s /2	Required N = (T _s /2) / τ
1%	4.6
0.1%	6.9
0.01%	9.2

 Circuit is typically designed to settle for N > 5...10 time constants

- Question: What is the noise at the output?
- Can't really answer this question without being more specific...

- Two possible ways to look at the noise
 - Noise in the continuous time output waveform
 - Discrete time, i.e. "frozen" noise values
- In SC circuits, we think about the signal in terms of discrete time samples, hence we should do the same for noise

- A discrete time noise sequence has two important properties
 - The variance of the samples
 - The spectrum of the sequence
 - Noise samples are uncorrelated \rightarrow white spectrum
 - Samples are correlated \rightarrow colored spectrum

 The variance of the samples is equal to the noise PSD integrated over all frequencies (Parseval)

$$\operatorname{var}\left[V_{\text{out}}(n)\right] = \overline{v_{\text{out,tot}}^2} = \int_0^\infty 4k \operatorname{TR} \cdot \left|\frac{1}{1+j2\pi f \cdot \operatorname{RC}}\right|^2 df = 4k \operatorname{TR} \cdot \frac{1}{4\operatorname{RC}}$$
$$\overline{\left|v_{\text{out,tot}}^2 - \frac{kT}{C}\right|}$$

0

Effect of Varying R

 Increasing R increases the noise PSD, but decreases the bandwidth

– R drops out

- For C=1pF the total integrated noise is ~64µVrms
- Integral converges for f > 10x RC bandwidth

Alternative Derivation

- The equipartition theorem says that each degree of freedom of a physical system in thermal equilibrium holds an average energy of kT/2
- In our system, the degree of freedom is the energy stored on the capacitor

$$\frac{1}{2}Cv_{out}^{2} = \frac{1}{2}kT$$
$$\overline{v_{out}^{2}} = \frac{kT}{C}$$

Does kT/C Noise Matter?

• Let's look at the SNR of the elementary T/H circuit with a 1V sinusoid applied

SNR [dB]	C [pF]
20	0.0000083
40	0.000083
60	0.0083
80	0.83
100	83
120	8300
140	830000

Required C is smaller than physically realizable

Designer will be concerned about thermal noise; component sizes often set by SNR

Difficult battle with thermal noise, often resort to oversampling or external components

Spectrum of Noise Samples

- The noise samples are instantaneous values (~T_s/2 apart) of the track mode noise process
- Intuition
 - If the τ = RC is small relative to T_s/2 the samples should show little correlation \rightarrow white spectrum
 - − For large RC \rightarrow significant correlation, colored spectrum

Transient Noise Simulation

Transient Noise Simulation

Calculating the Spectrum

- Spectrum follows from Fourier transform of the noise process' autocorrelation function (Wiener-Khinchin)
- The derivation in the following slides consists of two steps
 - Calculate autocorrelation function of noise at the output of the RC filter
 - Calculate the spectrum by taking the discrete time Fourier transform of the autocorrelation function

Analysis

 $R_{yy}(n) = \frac{kT}{C}e^{-\frac{|n\cdot0.5T_s|}{\tau}} = \frac{kT}{C}e^{-|n\cdot N|}$

Covariance of samples separated by n clock cycles
Analysis

PNOISE Simulation (More Later)

Noise Aliasing Interpretation

- Noise PSD of the samples $PSD_s = \frac{2}{f} \frac{kT}{C}$
 - $f_{s} = f_{s} C$
- Noise PSD of the resistor $PSD_R = 4kTR$
- Ratio of the PSDs $\frac{PSD_s}{PSD_R} = \frac{1}{2f_s}\frac{1}{RC} = \frac{T_s/2}{\tau} = N$
- The increase in the noise PSD is due to aliasing of noise across all frequencies into the band from 0...f_s/2

Noise Aliasing Interpretation

- When ϕ_{1e} goes low, the signal charge (Q_x) is acquired at node X
- During ϕ 2, this charge is redistributed onto C_f

Charge Conservation Analysis

- During ϕ_2

 $Q_{X1} = -C_s V_{in}$ $Q_{X2} = -C_f V_{out}$

Charge Conservation

$$Q_{x1} = Q_{x2}$$
$$C_s V_{in} = -C_f V_{out}$$

$$\therefore V_{out} = \frac{C_s}{C_f} V_{in}$$

- Need to find the total noise <u>charge</u> at node
 X after the \$\$\operature{1}\$e switch has turned off
- Tedious to calculate using piece-by-piece integration of all three noise sources

Equipartition to the Rescue

- Additional noise from R_{on} and OTA is added

Single Stage OTA Model

- Simplifying assumption: R_{on} has negligible effect on the circuit's frequency response
 - Typically true in a practical design; it would be wasteful to let the switch (rather than the OTA) limit the bandwidth

OTA Time Constant

$$R_{eq} = \frac{1}{\beta} \frac{1}{g_{mn}} \qquad C_{eq} = C_L + C_f (1 - \beta) \qquad \tau_{OTA} = R_{eq} C_{eq}$$

Output Referred Noise

À

Output Referred Noise

 OTA noise typically dominates, assuming R_{on} << 1/g_{mn}

Output Referred Noise $\overline{v_{out,2}^{2}} = \int_{0}^{\infty} 4kT\gamma\alpha g_{mn}R_{eq}^{2} \cdot \left|\frac{1}{1+j\omega R_{eq}C_{eq}}\right|^{2} df$ $= 4kT\gamma\alpha g_{mn}R_{eq}^2 \cdot \frac{1}{4R_{eq}C_{eq}}$ $\overline{v_{out}^2} = \frac{1}{\beta} \frac{kT}{C_{out}} \gamma \alpha$

- Noise introduced during $\phi 2$ is $\propto kT/C_{eq}$
 - Depending on feedback factor and OTA topology

Adding Up \$1 and \$2 Noises

$$\overline{v_{\text{out,1}}^2} = \frac{\overline{q_x^2}}{C_f^2} = \frac{kT(C_s + C_f + C_{\text{par}})}{C_f^2} \qquad \overline{v_{\text{out,2}}^2} \cong \frac{1}{\beta} \frac{kT}{C_{\text{eq}}} \gamma \alpha$$

$$\overline{v_{\text{out,tot}}^{2}} = \frac{kT}{C_{f}} \left(\frac{C_{s} + C_{f} + C_{\text{par}}}{C_{f}} \right) + \frac{1}{\beta} \frac{kT}{C_{\text{eq}}} \gamma \alpha$$

$$\boxed{\frac{1}{v_{in,tot}^{2}} = \frac{kT}{C_{s}} \left(1 + \frac{C_{f} + C_{par}}{C_{s}}\right) + \frac{1}{\beta} \frac{kT}{C_{eq}} \gamma \alpha \left(\frac{C_{f}}{C_{s}}\right)^{2}}$$

Noise/Power Tradeoff

- Reducing the noise by 6 dB means
 - Increase all C by 4x
 - Increase all g_m by 4x to preserve speed
 - Increase I_D by 4x to maintain same g_m/I_D
- Bottom line
 - Improving the dynamic range in a noise limited circuit by 6 dB ("1bit") quadruples power dissipation!

Noise in Differential Circuits

 In differential circuits, the noise power is doubled (due to two half circuits), and the signal power increases by 4x

- 3 dB win in dynamic range, but at the expense of twice the power dissipation
 - Can get the same DR/power in a single ended circuit by doubling all cap sizes and g_m

SC Noise Simulation

- There are at least three ways to simulate noise in switched capacitor circuits
- Basic .ac/.noise Spice simulations
 - Simulate noise in each clock phase separately

 - Sum integrated noise from the two phases
 - This is analogous to the way we carried out the hand analysis

SC Noise Simulation

- Periodic Steady State Simulation
 - First run PSS analysis to find the periodic operating point
 - Analogous to .op for .ac/noise
 - Next run PNOISE analysis
 - Computes total noise, taking all clock phases, noise aliasing, noise correlations, etc. into account
- Transient Noise
 - Direct simulation of all noise sources using a transient simulation
 - Most physical way of simulating noise

Example T/H Circuit

$$\label{eq:generalized_fs} \begin{split} &f_s = 100 \text{ MHz}, \, \alpha = 2, \, \gamma = 1 \\ &C_s = C_f = 100 \text{ fF}, \, C_L = 500 \text{ fF}, \, C_{\text{par}} \cong 0 \end{split}$$

- OTA G_m chosen such than $(T_s/2) / \tau_{OTA} = 10$
- Switches sized 5 times faster, i.e. N = 5.10 = 50

.Noise Simulation (ϕ **1)**

*** Compute noise charge at node X and refer to output via Cf
en vno 0 vcvs vol =(cs*v(x,s) + cf*v(x,f))/cf
.ac dec 100 100 1000Gig

.noise v(vno) vdummy

.Noise Simulation (ϕ **1)**

.Noise Simulation (\$2)

PSS Simulation Setup

~	Choosin	g Analyses	Virtuoso	® Analog	Design Environ	n 💌
	Analysis	💛 tran	U dc	🥥 ac	🧅 noise	
		⊖ xf	 sens 	 dcmatch 	i 🥥 stb	
		⊖ µz ⊖ nac	⇒ sμ ∴ nsth		pss mxf	
) pac	Q qpss	U qpac	o proi o gpnoise	
		⊖ qpxf) qpsp) hb	💛 hbac	
		💛 hbnoise				
		Periodic	Steady S	tate Analys	is	
Er	ngine	🖲 Shootir	ng 🤤 Har	monic Bala	ince	
	Fundamen	ntal Tones				
F	# Name	Expr	Value	Signa	al SrcId	
Г						-
1		Y		(Lawrence)		
	1			Large		J.
	Clear/A	dd Delete		Ipdate Fron	n Hierarchy	
	🖲 Beat Fi	requency -				
	💛 Beat Pe	eriod	100e6		Auto Calculate	5
						Ξ,
	Output har	rmonics	0			
U	Number of r	narmonics	0		/	
r	Accuracu	Dofaulte (orm	racath			
	∠ conse	ervative _ mo	oderate _	liberal		
	— Additional T	Time for Stabili:	zation (tsta	(d) (d)	K	
	Save Initial	Transient Resi	ulte (savoii	nif)	nn ves	
	ouve initia	Thurstern ries	uno (ouven			3
Ľ	Oscillator					
ſ	Sween	111				1
	blow Initial 1		h Daint (re	otort)	- no - 1100	/
Ľ	New Initial V	value Fui Eac	n romi (re	isidil)	in in the yes	
	Enabled 👱	1			Options	
		ОК	Cance	I) Defau	Its Apply H	elp

PSS Waveforms (Clocks)

Periodic Steady-State Analysis `pss': time = (0 s -> 10 ns)

PNOISE Simulation Setup

Analysis									
	🜙 tran	💛 dc	🥥 ac	U nois	е				
	U Xf	U sens	🥥 dcmatch	💛 stb					
	💛 pz	🔾 sp	💛 envip	💛 pss					
	💛 pac	💛 pstb	🖲 pnoise	🔾 pxf					
	U psp	\cup qpss	🔾 qpac	💛 qpn	oise				
	U qpxf	U qpsp	💛 hb	💛 hba	с				
	bhoise	2							
Periodic Noise Analysis									
SS Beat Fre	equency (Hz)	100e6							
Sweeptype	default		Sweep is cur	rently ab	isolute				
Output Fr	equency Swe	ep Range	(Hz)						
Start-Ston		Start 0		Ston F	0.46				
Con clop		Juli U		Nop 3					
Sweep Ty	pe								
Automatic	-								
Add Specif	ic Points 📃								
Liviovaniani e	nacbana								
When usin Output voltage Input Sour voltage Reference Enter in fie	Positivi Negativi veg	ngine, def e Output N ve Output oltage Son f(in) =	ault value is lode /voo Node gnd I urce /Vi [f(out) + efsi	7. I deband '	Select Select Select				
When usin Output voltage Input Sour voltage Enter in fie Noise Typ	Positiv Positiv Negatir CCE Input V Side-Band Id e [timedomair	ngine, def e Output N ve Output oltage Son f(in) =	ault value is lode /voo Node grad urce /vi lf(out) refsi	7. 1 deband *	Select Select Select				
When usin Output voltage Input Sour voltage Reference Enter in file Noise Typ timedoma	e (timedomair in: strobed not	ngine, def e Output N ve Output f(in) = f(in) =	ault value is lode /voo Node grad urce /vi lf(out) effsi 0	7. I deband ²	Select Select Select				
When usin Output voltage Input Soun voltage Reference Enter in file Noise Typ timedoma Noise	e timedomair in: strobed nu Skip Count	ngine, def e Output N ve Output oftage Sor f(in) =	ault value is lode /voo Node grad urce /vi lf(out) refsi 0	7. deband *	Select Select Select				
When usin Output voltage Input Soun voltage Reference Enter in file Noise Typ timedoma Noise ¥ Numbo	Positivi Positivi Negativi Input V Skide-Band Id e (timedomain in: strobed no Skip Count er of Points	ngine, def e Output N ve Output ioitage Sor f(in) = 	ault value is lode /voo Node grad urce /vi f(out) effsi 0	7. deband	Select Select Select				
When usin Output voltage Input Sour voltage Reference Enter in file Noise Typ timedoma Moise Mumbu Add Spec	Positiv Positiv Negativ Positiv Negativ Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv Positiv Negativ Positiv Positiv Negativ Positiv Positiv Negativ Positiv Positiv Negativ Positiv Positiv Negativ Positiv Positiv Negativ Positiv Positiv Negativ Positiv Positiv Negativ Positi	e Output N ve Output N oltage Sou (f(in)) = bise analy: 0	ault value is lode /voo Node grid I urce /Vi f(out) 1 efsi sis	7.	Select Select fund				

Numsidebands $\cong f_{max}/f_s$, where f_{max} is the maximum frequency from which you expect significant noise folding

"timedomain" means simulator computes spectrum of discrete time noise samples at the specified sampling instant

Sampling instant (4.75ns in this example)

How to Chose Parameters

- Maxacfreq must be set commensurate with the speed of the switches
 - Common pitfall: Use nice $1m\Omega$ switches \rightarrow must consider noise from "DC to daylight"
- In our example

Maxacfreq
$$\cong 10 \cdot \frac{1}{2\pi R_{on}C} = \frac{10}{\pi} \cdot N \cdot f_s$$

 $Maxacfreq \cong 3 \cdot 50 \cdot 100 MHz = 15 GHz$

How to Chose Parameters

Numsidebands
$$\cong \frac{\text{Maxacfreq}}{f_s} = \frac{15\text{GHz}}{100\text{MHz}} = 150$$

- In traditional PSS/PNOISE simulators (such as SpectreRF), simulation time increases rapidly for large values of Numsidebands
- Berkeley Design Automation (BDA) Analog FastSPICE (AFS) automatically includes an infinite number of sidebands at significantly reduced simulation times

PNOISE Result (SpectreRF)

Sampled Noise PSD

Integrated Noise

Transient Noise Using BDA AFS

- Simulated 1000 samples
- Only one critical setting: noisefmax = 15 GHz

Comparison

Method	φ1 Noise [μVrms]	φ <mark>2 Noise</mark> [μVrms]	Total [μVrms]	Comment
Calculation	406	245	474	Neglected switch noise during ϕ^2 \rightarrow smaller value than .NOISE
.NOISE	406	266	485	
PNOISE	-	-	475	Somewhat smaller than .NOISE due to finite Maxacfreq and Numsidebands
TRAN NOISE	-	-	477	Somewhat smaller than .NOISE due to statistical fluctuations (can use more samples)

 Very good agreement between hand calculation and all three simulation approaches

Advantages of TRAN NOISE

- Takes advantage of rapid advancements in very fast, spice-accurate transient simulators (such as BDA AFS)
 - Can handle much larger circuits compared to PSS/PNOISE (PSS tends to have convergence issues for large circuits)
- Intuitive inspection of waveforms
- No need to combine noises manually
 Compared to .ac/.noise simulation flow
- Applicable also to non-periodic circuits

Second-Order $\Delta\Sigma$ Modulator

STF = $\frac{Y(z)}{X(z)} = z^{-2}$ NTF = $\frac{Y(z)}{E(z)} = (1 - z^{-1})^2$

- Input referred noise similar to T/H stage
 - Output referred noise is colored due to integration → best to work with input noise

Second-Order $\Delta\Sigma$ Modulator

In-Band Noise

In-Band Noise

Total in-band thermal noise at modulator input:

$$\overline{v_{\text{in,tot}}^2} = \overline{v_{\text{in,tot1}}^2} \cdot \frac{1}{\text{OSR}} + \overline{v_{\text{in,tot2}}^2} \cdot \frac{\pi^2}{3} \frac{1}{\text{OSR}^3}$$

Summary (1)

- General
 - Significance of kT/C noise and steep trade-off with power dissipation
 - Whiteness of kT/C noise samples
 - Noise folding
- Charge redistribution circuit analysis
 - Charge domain analysis of track mode noise
 - Watch out for parasitics at charge redistribution node

Summary (2)

- Analysis of $\Delta\Sigma$ modulator
 - Convenient to work with input referred, equivalent white noise generators and corresponding noise transfer functions
 - The same approach works for SC filters
- SC noise simulation
 - Recent developments in transient simulators have made TRAN NOISE simulation an attractive alternative to more conventional methods