Fractional-*N* **PLLs**

Ian GaltonUniversity of California, San Diego La Jolla, California, USA

February 11, 2010

INTEGRATED SIGNAL PROCESSING GROUP

©2010 IEEE International Solid-State Circuits Conference ©2010 IEEE

Outline

- Summary of Integer-*N* PLL Limitations
- The Idea Behind Fractional-*N* PLLs
- Delta-Sigma Modulation Overview
- Fractional-*N* PLL Dynamics
- Spurious Tones in Fractional-*N* PLLs
- Fractional-*N* PLL Bandwidth Enhancement
- IC Implementation Examples (bonus slides: not presented)

A Typical Integer-*N* **PLL**

Have fundamental resolution/bandwidth/noise tradeoff

Lower f_{ref} (larger *N*) for a given f_{VCO}

- \Rightarrow finer tuning resolution
- \Rightarrow lower bandwidth (slower settling)
- \Rightarrow larger VCO noise contribution
- \Rightarrow larger in-band divider, reference, and charge pump noise contributions

Example: Bluetooth channel frequencies from a 19.68 MHz crystal

Problem: Must design loop bandwidth to be less than 4 kHz!

 \Rightarrow Can't meet the 200 µs settling requirement

 \Rightarrow Can't meet the Bluetooth phase noise requirements

Outline

• Summary of Integer-*N* PLL Limitations

• **Th Id B hi d The Idea BehindF il ract onal-***N* **PLLs**

- Delta-Sigma Modulation Overview
- Fractional-*N* PLL Dynamics
- Spurious Tones in Fractional-*N* PLLs
- Fractional-*N* PLL Bandwidth Enhancement
- IC Implementation Examples (bonus slides: not presented)

Idea: Periodically switch divider modulus between 122 and 123 so the *average modulus* is $122 + 51/492$

- \Rightarrow Have desired VCO frequency (at least on average)
- \Rightarrow Loop bandwidth can be up to almost 2 MHz
- \Rightarrow Periodic switching causes large spurious tones at multiples of 40 kHz
- \Rightarrow At low frequencies the tones see little loop suppression

Observations From These Fractional-*N* **PLLs**

- $y[n]$ must be integer-valued with a sample-rate of f_{ref}
- The PLL lowpass filters $y[n]$ measured at the VCO input, so $f_{VCO} = (N + \text{lowpass filtered version of } y[n]) \cdot f_{ref}$

Conclusion: Would like $(y[n] - 51/492)$ to be zero-mean with most of its power outside the PLL's bandwidth

Idea: Use a *digital* ΔΣ *modulator* to quantize *^α* such that the *quantization noise* is zero-mean and has most of its power outside the PLL bandwidth. Then

$$
f_{VCO} = (122 + \alpha) \cdot f_{ref}
$$

 \Rightarrow Have precise frequency control without excessive phase noise Can also modulate VCO by changing *^α* each reference period

Outline

- Summary of Integer-*N* PLL Limitations
- The Idea Behind Fractional-*N* PLLs
- **Delta-Sigma Modulation Overview**
- Fractional-*N* PLL Dynamics
- Spurious Tones in Fractional-*N* PLLs
- Fractional-*N* PLL Bandwidth Enhancement
- IC Implementation Examples (bonus slides: not presented)

Quantizer Example

There are many types of $\Delta\Sigma$ modulators, but most involve feedback
around uniform quantizers.

Quantizer Example

Such quantizers alone do not have well-behaved quantization noise:

In the 0-500 kHz band, the SNDR is only 14 dB

ΔΣ Modulator Example⁵

A *second-order* $\Delta\Sigma$ *modulator* using the same 9-level uniform quantizer:

Can show:

$$
y[n] = x[n-2] + e_q[n] - 2e_q[n-1] + e_q[n-2]
$$

As Modulator Quantization Noise (call it e. [n])

 $\Delta \Sigma$ Modulator Quantization Noise (call it $e_{\Delta \Sigma}[n]$)

Idea: The quantization noise, $e_q[n]$, is subjected to two zero-
frequency zeros whereas the signal is just delayed

 \Rightarrow Quantization noise power is mostly at high frequencies

ΔΣ Modulator Example

Unlike the quantizer alone, the $\Delta\Sigma$ modulator has well-behaved quantization noise:

In the 0-500 kHz band, the SNDR is 84 dB with no spurious tones!

The ΔΣ Modulator Example in a Fractional-*N* **PLL**

Example 1 Revisited ($k = 1$ case):

PLL phase noise from the $\Delta\Sigma$ modulator meets the Bluetooth local oscillator requirements for the 50 (but not 500) kHz BW case

ΔΣ Modulator Limitations

• The $\Delta\Sigma$ quantization noise must go somewhere—ideally, above the PLL bandwidth (up to $f_{ref}/2$)

 \Rightarrow Phase noise spec places limit on PLL bandwidth

• Increasing the $\Delta\Sigma$ modulator order⁶ puts more of the quantization noise above the PLL bandwidth, but the PLL has limited filtering capabilities

 \Rightarrow Higher than 3rd-order $\Delta\Sigma$ modulation rarely used

- Must use dither, e.g., 1-bit pseudo-random LSB dither⁷⁻⁸, to eliminate spurious tones in *y*[*n*]
- $\Delta\Sigma$ modulators with 1-bit quantization are rarely used because they require $\max\{x[n]\} - \min\{x[n]\} < 1$ which limits the achievable output frequencies, and dithering does not eliminate spurious tones

Outline

- Summary of Integer-*N* PLL Limitations
- The Idea Behind Fractional-*N* PLLs
- Delta-Sigma Modulation Overview

• **Fractional-***N* **PLL Dynamics**

- Spurious Tones in Fractional-*N* PLLs
- Fractional-*N* PLL Bandwidth Enhancement
- IC Implementation Examples (bonus slides: not presented)

The PLL's phase noise, $\theta_{PLL}(t)$, depends on:

$$
\theta_{ref}(t) = \text{reference oscillator phase noise},
$$

$$
\theta_{VCO}(t) = \text{VCO phase noise},
$$

$$
\theta_{div}(t) = \text{divider phase noise},
$$

 $\theta_{\text{PFD}}(t)$ = PFD phase noise,

- $i_n(t)$ = charge pump and loop filter noise (referred to the loop filter input), and
- $e_{\Delta\Sigma}[n] = \Delta\Sigma$ modulator quantization noise (Slide 12)

"Linearized" Fractional-*N* **PLL Model**⁹

Fractional-*N* **and Integer-***N* **PLL Model Differences**

Shaded region is the only difference between fractional-*N* and integer-*N* PLL linearized models

Usually, $N \gg \alpha$, so fractional-*N* PLLs have the same loop equations and noise transfer functions (except for $\Delta\Sigma$ quantization noise) as integer-*N* PLLs

ΔΣ Modulator Quantization Noise Path

The PSD of $\varepsilon_{\Delta\Sigma}(t)$ for an *L*th-order **ΔΣ modulator:**

$$
S_{\varepsilon_{\Delta\Sigma}}(f) = \frac{\pi^2}{12 f_{ref}} \left[2 \cdot \sin\left(\frac{\pi f}{f_{ref}}\right) \right]^{2(L-1)}
$$

A Secondary Effect of the ΔΣ Modulator

Fractional-*N* PLL charge pump pulses are wider than integer-*N* charge pump pulses by $\pmb{0}$ 1 $\frac{1}{\cdot} \sum_{k=0}^{n-1} e_{\Lambda \Sigma}[k]$ *k* $\frac{1}{f_{VCO}}\sum_{k=0}^{m-1}e_{\Delta\Sigma}[k]$ $\sum\nolimits_{k=0}^{n-1} {{\varrho}}_{\Delta \Sigma}$

which has a variance of $1/(6f_{VCO}^2)$ or $1/(2f_{VCO}^2)$ for a $\Delta\Sigma$ modulator order of 2 or 3, respectively *VCO*

 \Rightarrow This increases the effect of charge pump noise on $\theta_{PLL}(t)$

Local oscillator PLL for ^a direct conversion Bluetooth receiver: Requirements:

- Crystal frequency: 19.68 MHz (other crystals are easier)
- PLL output frequencies: $f_{VCO} = 2.402 \text{ GHz} + k \text{ MHz}, k = 0, ..., 78$

 $f_{RW} > 40$ kHz

- Loop bandwidth: f_{BW}
- Phase margin: $PM > 60^{\circ}$
- Total PLL phase noise: ≤ -120 dBc/Hz at ≥ 3 MHz from f_{VCO}

Assume:

Reference source, VCO, divider, PFD and charge pump have been designed and meet noise specifications provided the $\Delta \bar{\Sigma}$ modulator and loop filter each contribute ≤ -130 dBc/Hz at 3 MHz from f_{VCO}

Design Tasks:

- Choose $\Delta\Sigma$ modulator and frequency plan
- Choose loop filter component values

Assume a 2nd-order $\Delta\Sigma$ modulator is sufficient (will verify later):

Frequency Plan:

- To get $k = 0, 1, ...,$ or 18:
- •
- •
- •

 $\text{set } N = 122, m = k \cdot 25 + 26$ To get $k = 19, 21, ...,$ or 38: set $N = 123, m = (k - 19) \cdot 25 + 9$ To get $k = 39, 41, ...,$ or 57: set $N = 124, m = (k - 39) \cdot 25 + 17$ To get $k = 58, 60, \ldots$, or 78: set $N = 125, m = (k - 58) \cdot 25$

Relevant loop equations: (derived from linearized model¹⁶)

$$
PM = \tan^{-1}\left(\frac{b-1}{2\sqrt{b}}\right), \qquad \text{where } b = \frac{C_2}{C_1} + 1
$$
\n
$$
f_{BW} = \frac{IK_{VCO}R}{2\pi N} \cdot \frac{b-1}{b}
$$
\n
$$
RC_2 = \frac{\sqrt{b}}{2\pi f_{BW}}
$$
\n
$$
S_{\theta_{PL}}(f)|_{\Delta\Sigma \text{ only}} \approx 10 \cdot \log \left\{ \frac{4\pi^2 b}{3f_{ref}} \left[\sin^2\left(\frac{\pi f}{f_{ref}}\right)\right] \left(\frac{f_{BW}}{f}\right)^4 \right\} \text{ dBc/Hz},
$$
\n
$$
\left(\text{valid for } f > \frac{C_1 + C_2}{2\pi RC_1C_2}\right)
$$

 $Calculations:$ (for K_{VCO} = 200 MHz/V, $I = 200 \mu\text{A}$)

Choose $b = 15$ in *PM* equation to get $PM = 62^{\circ}$

- 2) Solve $S_{\theta_{PL}}(3 \cdot 10^6 \text{ Hz})\Big|_{\Delta\Sigma \text{ only}} = -130 \text{ dBc/Hz}$ to get $f_{BW} = 44 \text{ kHz}$
- 3) Use the f_{BW} equation to get $R = 915 \Omega$
- 4) Use the RC_2 and *b* equations to get $C_2 = 15.3$ nF and $C_1 = 1.1$ nF

Phase Noise:

©2010 IEEE International Solid-State Circuits Conference ©2010 IEEE

Outline

- Summary of Integer-*N* PLL Limitations
- The Idea Behind Fractional-*N* PLLs
- Delta-Sigma Modulation Overview
- Fractional-*N* PLL Dynamics
- **Spurious Tones in Fractional-***N* **PLLs**
- Fractional-*N* PLL Bandwidth Enhancement
- IC Implementation Examples (bonus slides: not presented)

Reference Spurs and Fractional Spurs

PLL phase noise always contains spurious tones ("spurs"):

- Have reference spurs at multiples of *fref* (like integer-*N* PLLs)
- \triangleright Have fractional spurs at multiples of αf_{ref} modulo f_{ref}

Fractional Spur Overview

 \Rightarrow fractional spurs at multiples of αf_{ref} = 1 MHz

In general ^a PLL lowpass filters most fractional spurs general,

- Effective only for spurs above PLL bandwidth
- ≻ Spurs within PLL bandwidth are unfiltered (typ. > -60dBc)

 \Rightarrow design restrictions on α , f_{ref} , and the PLL bandwidth

Overview of Fractional Spur Mechanisms

Mechanism 1:

Nonlinear coupling of $v_{ref}(t)$ and $v_{vco}(t)$ (or $v_{div}(t)$) e.g., [*Nth harmonic in* $v_{ref}(t)$] $\times v_{vco}(t) \Rightarrow \alpha f_{ref}$ spur

Mechanism 2:

Nonlinear distortion of $\Delta\Sigma$ quantization noise by non-ideal analog circuits (little known because same spur frequencies as Mechanism 1)

Fractional Spur Mechanism 1

- •• Parasitic coupling of $v_{ref}(t)$ and $v_{vco}(t)$ (or $v_{div}(t)$) $v_{\textit{vco}}(t)$ and $v_{\textit{vco}}(t)$ (or $v_{\textit{div}}(t)$) cause *fractional spurs*
- The greatest opportunities for such coupling occur in the PFD and CP because they process signals aligned to $v_{ref}(t)$ and $v_{div}(t)$:

Power supplies to the PFD and CP are the main coupling paths

- The $v_{ref}(t)$ edge causes ringing through the V_{DD} bond wire
- If ringing persists to the next $v_{div}(t)$ edge, the bottom flip-flop output is affected by $v_{ref}(t)$ as well as $v_{div}(t)$ $_{ef}(t)$ as well as $v_{div}(t)$

 \Rightarrow nonlinear coupling of $v_{ref}(t)$ and $v_{div}(t)$

Solution: Offset Current to Separate PFD Edges¹³

- This separates edges of v_{ref} and v_{div} \Rightarrow V_{DD} ringing has time to die out
- Similar to method presented in [10]
- But current source mismatches cause big reference spur!

A Simple Method to Reduce the Reference Spur

Can use ^a sampled loop filter to reduce the reference spur (and improve $\Delta \Sigma$ noise cancellation – details later)¹¹⁻¹⁴

Example:¹³

- Switch is open only when $i_{in} \neq 0$ (e.g., 25 ns per reference period) \Rightarrow no reference spur from current source mismatches
- Charge injection is impulsive so it sees $R \approx$ open circuit and is well-cancelled by the half-size dummy switches

Nonlinearities come from the analog circuits:

- •Nonlinearities in the divider operate on $e_q[n]$
- •• Nonlinearities from other blocks operate on $\sum_{e_a}[k]$

If the nonlinearity applied to $e_q[n]$ or its running sum causes spurs, then the PLL's output signal contains spurs

n \sum

0*k*

═

q e

k

Example: Effect of second-order distortion:

- •Similar results occur with other types of non-linear distortion
- •• Similar results occur regardless of the type of $\Delta\Sigma$ modulator and dither used
	- \Rightarrow The $\Delta\Sigma$ modulator is the root cause of the problem!
Plausibility Demonstration of Mechanism 2

- **Q:** How can nonlinear distortion create spurs from a "spur-free" sequence?
- **A:** The following example gives a simple plausibility demonstration

$$
\underbrace{...,\pm 1,0,\pm 1,0,\pm 1,0,..}_{\text{white noise}}
$$
 \longrightarrow $\underbrace{()^2}$ \longrightarrow $...1,0,1,0,1,0,1,0,...$

The randomness is *sufficient* to ensure that the input is spur-free, but it is *insufficient* to ensure that its square is spur-free.

Details of Mechanism 2

where $\langle x \rangle$ = fractional part of x, and $\lfloor x \rfloor = x - \langle x \rangle$

Each periodic sequence has spurs. Randomness from the dither prevents spurs in $y[n]$, but not in $y^k[n]$ for $k > 1$

 \Rightarrow must minimize analog circuit nonlinearity

Nonlinearity: Modulus-Dependent Divider Delays

- **Problem:** *Modulus-dependent divider delays*, i.e., error in $v_{div}(t)$ that depends upon $y[n]$, can be a major source of nonlinearity
- **Solution:** Resynchronize divider output to nearest VCO edge or at least a higher-frequency edge within divider ¹⁵

Nonlinearity: Charge Pump Dead Zone

The "obvious" way to control the charge pump leads to a "dead zone" which causes nonlinearity:

Nonlinearity: Charge Pump Dead Zone

Observation: The charge in the $i_{CP}(t)$ pulse changes linearly with the phase difference between $v_{ref}(t)$ and $v_{div}(t)$ provided the current sources are on long enough to fully settle

Charge Pump Dead Zone Nonlinearity Solution¹⁶

Ideally, $i_{CP}(t) = 0$ when both CP current sources are on, so for each $i_{CP}(t)$ pulse, turn both on long enough to settle (at least T_D), with the $i_{CP}(t)$ pulse formed by their difference:

This eliminates the dead zone, but increases CP noise and mismatches cause a periodic ripple which adds to the reference spur

Charge Pump Dead Zone Nonlinearity Solution¹⁶

Nonlinearity arises from mismatched positive and negative currents:

The slope discontinuity implies nonlinear behavior

©2010 IEEE International Solid-State Circuits Conference ©2010 IEEE

- **Q**: What's so hard about matching current sources?
- **A**: The voltages across the *p* and *n* current sources do not track and they span a wide range depending on the PLL frequency

(The T_D delay is to eliminate the dead zone as described previously)

A closer look at typical charge pump pulses:

Positive-Negative CP Mismatch Solutions

- **Solution 1:** Increase output impedance of charge pump current sources (but this requires headroom)
- **Solution 2:** Actively balance the charge pump current sources using replica bias and an op-amp feedback circuits¹⁷ (works well for narrow-band PLLs, but increases settling time)
- **Solution 3:** Modify PFD and charge pump so good matching is only required between like current sources 18
- **Solution 4:** Use a charge pump offset (Slide 32) so only one charge pump current source carries phase information, and use a sampled loop filter (Slide 33) to avoid a large reference spur¹³

Outline

- Summary of Integer-*N* PLL Limitations
- The Idea Behind Fractional-*N* PLLs
- Delta-Sigma Modulation Overview
- Fractional-*N* PLL Dynamics
- Spurious Tones in Fractional-*N* PLLs

• **F ti l ractional-***N* **PLL B d idth E h t Bandwidth Enhancement**

• IC Implementation Examples (bonus slides: not presented)

- \therefore but it also:
 $\frac{d^2}{d^2}$ -100
 $\stackrel{d^2}{d^2}$ -120
- reduces PLL settling time
- reduces sensitivity to VCO pulling
- enables an on-chip loop filter
- enables in-loop transmit modulation

 f_{ref}

 Hz

 $BW = 50 kF$

 -140

 -160

Idea Behind $\Delta\Sigma$ **Phase Noise Cancellation**

A Phase Noise Canceling Fractional-*N* **PLL**

Use a wide PLL bandwidth but cancel the $\Delta\Sigma$ quantization noise prior to the loop filter 10, 12-14, 18-19

The DAC cancels most of the $\Delta\Sigma$ quantization noise prior to loop filter so PLL bandwidth need not be small

Effect of DAC Gain Error

- •DAC gain error degrades the phase noise cancellation
- Passive matching is sufficient in many cases when f_{ref} is large enough (e.g., \geq 35 MHz) enough (e.g., \geq 35 MHz)
- Each halving of f_{ref} increases the phase noise from DAC gain error by $6(L^{-1/2})$ dB $(L = \Delta\Sigma \text{ order})^{19}$
- Adaptive gain calibration can be used for low f_{ref} cases¹⁹

Outline

- Summary of Integer-*N* PLL Limitations
- The Idea Behind Fractional-*N* PLLs
- Delta-Sigma Modulation Overview
- Fractional-*N* PLL Dynamics
- Spurious Tones in Fractional-*N* PLLs
- Fractional-*N* PLL Bandwidth Enhancement
- **IC Implementation Examples** (bonus slides: not presented)

A Direct Method of Adaptive Calibration20

A Sign-LMS algorithm adjusts ΔI_{bias} until DAC gain is correct

- Term proportional to $e_{cp}[n]$ remains in v_{ctrl} if DAC cancellation is not perfect
- Since sgn $\{e_{cp}[n]\}\times e_{cp}[n] = |e_{cp}[n]|$, integrator ramps up or down until ΔI_{bias} is adjusted properly

What's the Catch?

- •• v_{ctrl} can have a large DC component (it sets the VCO freq)
- •Hence, the LMS loop contains a large sgn ${e_{cn}[n]}$ term
- •But sgn ${e_{cp}[n]}$ contains large spurious tones
- •To suppress the tones, the LMS loop BW must be *very* low
- \Rightarrow Very slow calibration settling, e.g., 1s in prior art

A Fast-Settling Adaptive Calibration Technique19

Idea: Split the VCO's varactor into 2 parallel halves; use the common-mode voltage to control the VCO and the differentialmode voltage to control the calibration loop

- VCO is controlled by its common-mode input voltage, but is insensitive to differential-mode voltage
- The differential-mode voltage is now available to independently control calibration loop

A Fast-Settling Adaptive Calibration Technique

- Two parallel half-sized loop filters and varactors create differential signal path for calibration loop
- Multiplication by ± 1 performed by current steering
- Calibration feedback loop is DC-free

The Calibration Loop Signal Path

The calibration loop is controlled by a differential-mode signal that has no DC component

- \Rightarrow Calibration signal does not have to be filtered out by the calibration loop
- \Rightarrow Can have a wide calibration loop BW!

The PLL Signal Path

The VCO output is insensitive to calibration signal \Rightarrow Calibration does not affect operation of PLL!

Example PLL IC 1: Block Diagram19

Output frequency: 2.4-2.5GHz; bandwidth: 730kHz Technology: 0.18µm CMOS; Supply Voltage: 1.8V

Example PLL IC 1: DAC Topology

Segmented dynamic element matching used to eliminate harmonic distortion from non-ideal DAC weights and pulse shapes 21

Example PLL IC 1: 1-bit DAC Circuit Details

 M_1 and M_2 used to minimize injection of channel charge into loop filter

Example PLL IC 1: Die Photograph

Example PLL IC 1: Measured Phase Noise

 $\frac{1}{2}$ Agilent 05:51:28

Example PLL IC 1: Performance Details

Example PLL IC 1: Measured Spur Performance

Agilent 06:27:03 兼

A ΔΣ Modulator Replacement²² $\frac{18}{x_2[n]}$ $2^{16}a \rightarrow 19$ |
| Quantization 2nd $16th$ Quantization Quantization $\overline{x_{16}[n]}$ $\widehat{y[n]} = \alpha + e_q[n]$ x_1 | n **Block Successive Requantizer** $x_d[n] \stackrel{20-d}{\longrightarrow}$ $19 - d$ $x_{d+1}[n]$ $s_d[n] = \begin{cases} \text{even value}, & \text{if } x_d[n] = \text{even}, \\ \text{odd value}, & \text{if } x_d[n] = \text{odd}. \end{cases}$ (discard LSB) d^{th} Quantization Block

- 2¹⁶ α = integer (resolution of α is 2⁻¹⁶)
- Each quantization block divides by two and quantizes by one bit
- LSB of $s_d[n] + x_d[n]$ is zero so discarding it implements $\div 2$
- $e_q[n]$ is a linear combination of the $s_d[n]$ sequences
- $s_d[n]$ sequences must have properties desired of $e_q[n]$

Quantization block operation: $x_{d+1}[n] = \frac{1}{2}(x_d[n] + s_d[n])$

In this work, have designed $s_d[n]$ to:

- 1. Ensure that the bit-width of $x_{d+1}[n]$ is that of $x_d[n]$ minus one \Rightarrow parity of $s_d[n]$ must equal parity of $x_d[n]$ \Rightarrow magnitude of $s_d[n]$ must not be too large
- 2. Keep $t_d[n]$ bounded (\Rightarrow 1st-order shaped PSD)
- 3. Prevent spurs in $(s_d[n])^p$, $p = 1, ..., 5$, and $(t_d[n])^q$, $q = 1, 2, 3$ (this requires $s_d[n] \in \{0, \pm 1, \pm 2, \pm 3\}$)

where $t_d[n]$ is the running sum of $s_d[n]$

Tradeoff: Achieving item 3 increases power of $s_d[n]$ Phase noise cancellation circumvents this problem

The Quantization Block Details

Combinatorial Logic Truth Table: LSB of $x_d[n] = 0$ $S_d[n]$ *t*_{*d*}[*n*−1] $r_d[n]$ | *s* 02 ≥ 0 and ≤ 3 | 0 | 2 2 -2 \le −1 or \ge 4 1 ≤ -1 or ≥ 6 | 0 ≥ 0 and \leq 5 1 −2 $0 \quad 0 \text{ or } 1 \quad 2$ 0 ≤ -1 or ≥ 4 | 0 $0 \quad 2 \text{ or } 3$ -2 −1 ≤ -1 or ≥ 6 | 0 −1 ≥ 0 and ≤ 5 | 2 2− ≥ 0 and ≤ 3 | 0 | | -1 | 0 0 -2 ≤ -1 or ≥ 4 | 2

- $t_d[n]$ = running sum of $s_d[n]$
- $t_d[n]$ kept bounded \Rightarrow 1st-order PSD shape
- No spurs in $(s_d[n])^p$, $p = 1, 2, ..., 5$, and $(t_d[n])^q$, $q = 1, 2, 3$
- See [22] for the math

Example PLL IC 2: Block Diagram¹³

• f_{VCO} \in 2.4 GHz ISM band; f_{ref} = 12 MHz; PLL BW = 975 kHz

- Phase noise cancellation with calibration (not shown) as in [19]
- Also contains a $\Delta\Sigma$ modulator for comparison
Example PLL IC 2: Meas. Close-In Fractional Spur

Example PLL IC 2: Measured Fractional Spur Levels

Comparison between $\Delta \Sigma$ Modulator and SR with and without offset current:

©2010 IEEE International Solid-State Circuits Conference ©2010 IEEE

Example PLL IC 2: Measured Output Spectra

Example PLL IC 2: Performance Table

†Over 4 IC copies each measured with 100 values of 0 < *α* < 1

Example PLL IC 2:Die Photograph

Have Discussed:

- Integer-*N* PLL Limitations
- The Idea Behind Fractional-*N* PLLs
- Delta-Sigma Modulation Overview
- Fractional-*N* PLL Dynamics
- Spurious Tones in Fractional-*N* PLLs
- Fractional-*N* PLL Bandwidth Enhancement

References

- 1. F. M. Gardner, "Charge-pump phase-lock loops," *IEEE Transactions on Communications*, vol. COM-28, pp. 1849-1858, November 1980.
- 2. B. Miller, B. Conley, "A multiple modulator fractional divider," *Annual IEEE Symposium on Frequency Control*, vol. 44, pp. 559-568, March 1990.
- 3. B. Miller, B. Conley, "A multiple modulator fractional divider," *IEEE Transactions on Instrumentation and Measurement*, vol. 40, no. 3, pp. 578-583, June 1991.
- 4. T. A. Riley, M. A. Copeland, T. A. Kwasniewski, "Delta-sigma modulation in fractional-N frequency synthesis," IEEE Journal of Solid-State Circuits, vol. 28, no. 5, pp. 553-559, May, 1993.
- 5. G. Lainey, R. Saintlaurens, P. Senn, "Switched-capacitor second-order noise-shaping coder," *IEE Electronics Letters*, vol. 19, pp. 149-150, February 1983.
- 6. R. Schreier, G. C. Temes, *Understanding Delta-Sigma Data Converters*, John Wiley and Sons, 2005.
- 7. S. Pamarti, J. Welz, I. Galton, "Statistics of the Quantization Noise in 1-Bit Dithered Single-Quantizer Digital Delta–Sigma Modulators," IEEE Transactions on Circuits and Systems I: *Regular Papers*, vol. 54, no. 3, pp. 492 – 503, March 2007.
- 8. S. Pamarti, I. Galton, "LSB Dithering in MASH Delta–Sigma D/A Converters," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 54, no. 4, pp. 779 – 790, April 2007.

References

- 9. Phase-Locking in High-Performance Systems: From Devices to Architectures," Behzad Razavi, Ed., John Wiley & Sons, 2003.
- 10. E. Temporiti, G. Albasini, I. Bietti, R. Castello, M. Colombo. "A 700kHz Bandwidth ΣΔ Fractional Synthesizer with Spurs Compensation and Linearization Techniques for WCDMA Applications," *IEEE Journal of Solid-State Circuits*, vol. 39, no. 9, Sept. 2004, pp. 1446-1454.
- 11. B. Zhang, P. E. Allen, J. M. Huard, "A fast switching PLL frequency synthesizer with an on-chip passive discrete-time loop filter in 0.25-µm CMOS," *IEEE Journal of Solid-State Circuits*, vol. 38, pp. 855-865, June 2003.
- 12. S. E. Meninger, and M. H. Perrott. "A 1MHz bandwidth 3.6GHz 0.18um CMOS fractional-N synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise," *IEEE Journal of Solid-State Circuits*, vol. 41, no. 4, Apr. 2006, pp. 966-980.
- 13. K. Wang, A. Swaminathan, I. Galton, "Spurious-tone suppression techniques applied to a widebandwidth 2.4GHz fractional-N PLL," *IEEE Journal of Solid-State Circuits*, vol. 43, no. 12, pp. 2787-2797, December 2008.
- 14. H. Hedayati, B. Bakkaloglu, W. Khalil, "A 1MHz-Bandwidth Type-I ΔΣ Fractional-N Synthesizer for WiMAX Applications," IEEE International Solid-State Circuits Conference, pp. 389-390, February 2009.
- 15. L. Lin, L. Tee, P. R. Gray, "A 1.4 GHz differential low-noise CMOS frequency synthesizer using a wideband PLL architecture", *IEEE ISSCC Digest of Technical Papers*, pp. 204-205, Feb. 2000.

References

- 16. B. Razavi, *Design of Analog CMOS Integrated Circuits*, first ed., McGraw Hill, 2001, pp. 562- 566.
- 17. J. S. Lee, et. al., "Charge pump with perfect current matching characteristics in phase-locked loops," *Electronic Letters*, vol. 36, no. 23, pp. 1907-1908, November 2000.
- 18. S. Pamarti, L. Jansson, I. Galton, "A wideband 2.4-GHz delta-sigma fractional-NPLL with 1- Mb/s in-loop modulation," *IEEE Journal of Solid-State Circuits*, vol. 39, no. 1, pp. 49 – 62, January 2004.
- 19. A. Swaminathan, K. Wang, I. Galton, "A wide-bandwidth 2.4GHz ISM-band fractional-*N* PLL with adaptive phase-noise cancellation," *IEEE Journal of Solid-State Circuits*, vol. 42, no. 12, pp. 2639-2650, Dec. 2007.
- 20. M. Gupta and B. S. Song. "A 1.8GHz spur cancelled fractional-N frequency synthesizer with LMS based DAC gain calibration," *IEEE Journal of Solid-State Circuits*, vol. 41, no. 12, pp. 2842-2851, Dec. 2006.
- 21. K. L. Chan, J. Zhu, I. Galton, "Dynamic element matching to prevent nonlinear distortion from pulse-shape mismatches in high-resolution DACs," *IEEE Journal of Solid-State Circuits*, vol. 43, pp.2067-2078, Sept. 2008.
- 22. A. Swaminathan, A. Panigada, E. Masry, I. Galton, "A digital requantizer with shaped requantization noise that remains well behaved after non-linear distortion," *IEEE Transactions on Signal Processing*, vol. 55, no. 11, pp. 5382-5394, Nov. 2007.