

T2 Pipelined A/D Converters: The Basics

Aaron Buchwald, PhD

Sunday 03 Feb 2008

ISSCC 2008 Tutorial

Applications: ADC Performance is Critical

- Dramatic improvement in converter performance is required for emerging IEEE communication standards
- Data converters will be a key enabling technology to realize ICs at the appropriate power

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

Pipelined ADCs Speed and Resolution

B. Murmann, "ADC Performance Survey 1997-2007," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.

What is a "Pipelined" ADC

What is a "Pipelined" ADC

Efficient Calculation Machine Similar to Systolic Arrays – FFT Butterfly Calculation

5-bit Flash: Ruler Analogy

LSB = 1cm = 100-miles

15-bit Spatial Sub-Ranging ADC

Coarse Estimate – Center - Amplify

2nd-Stage Sub-range

Repeat Centering and Residue Amplification

Self Similarity

Matryoshka / Russian Nesting Dolls

Fractal Geometry of Nature

3rd-Stage Sub-range

4th Stage - Features Large Enough to Quantize

4-Stage 15-bit Pipeline ADC

Challenges in Pipeline ADCs: Offsets & DAC

 \bigcirc

Challenges in Pipeline ADCs: Gain and Non-linearity

Limitations in accuracy due to gain errors and amplifier non-linearity

ADC = DAC + Comparison

Successive Approximation & Relationship to Pipelined ADCs

ISSCC 2008 Tutorial

Signal vs. DAC Comparison: Inverse Transfer Function

DAC Limits Accuracy

- Drive DAC to minimize error
- ADC accuracy depends on DAC

Successive Approximation ADC (SAR)

Use Feedback to Drive Error to Zero

- Successive Approximation
- Iteratively change DAC code until error is minimized

ADC Basics: DAC Successive Approximation

DACs are identical

- Error contribution from each DAC affects performance equally
- Full precision required at each node

ADC Basics: DAC Binary Weighting

DACs are Binary Weighted

- Error contribution from DAC mismatch is scaled by reference
- MSB DACs must have better matching than LSB DACs

Binary Weighting Using Gain Blocks

DACs are identical, but see different gain to output

- Error contribution from each DAC is proportional to gain in signal path
- MSB DAC is most critical

Binary Weighting with Distributed Gain ($a_0=1$)

DACs are identical: Gain is Distributed

- MSB DAC most critical because it sees largest gain
- Feed-forward path is now modular. All sections are identical

Dominant Error Sources

Transition from Feedback-Based to Pipeline

Feedback not allowed for pipeline design

- Can not afford to wait for signal to propagate down the chain
- Coefficients must be set by Feed-forward path
- Error Sources and Expression of Analog Output of DACs do not change
- Problem is now is to set Coefficients without overflow of internal nodes

Adding Analog Delay Allows Pipeline

Sample and Hold as an Analog Delay

- With analog memory each section works on a single residue
- Latency increases, but throughput is high with one complete conversion per clock cycle

ADCs in Feed-Forward Path Replace Feedback

Final result does NOT depend on feed-forward ADCs

- Provided error "e" is minimized, accuracy is identical to SAR-based ADC
- Coarse ADC job is to get "close" and avoid overflow at intermediate nodes

Simple 1-bit-per-stage Pipelined ADC

ISSCC 2008 Tutorial

Simple Radix-2 Pipelined ADC

Voltage Sub-Ranges: No Overlap

Residue Plot: Input to Residue Transfer Function

• No over-range margin in amplitude

Radix-2 Pipelined ADC: Residue Voltages

Slice Architecture: Pipelined ADC

$$\frac{V_0}{2} = 8V_{\rm IN} - V_{\rm ref} \left[8D_3 + 4D_2 + 2D_1 + D_0 \right]$$

$$\frac{V_{\rm IN}}{V_{\rm ref}} \approx \frac{1}{8} \begin{bmatrix} D_3 & D_2 & D_1 & D_0 \end{bmatrix} \bullet \begin{bmatrix} 8\\4\\2\\1 \end{bmatrix}$$
1-bit-per-Stage ADC with Input Near Zero

Chosen Residue

Voltage Sub-Ranges: Comparator Offset

Clipping: Major Error

Redundancy

ISSCC 2008 Tutorial

Long Division: Natalya's 6th Grade Homework

Voltage Sub-Ranges: With Overlap

Residue Plot: with Redundancy

Redundancy Relaxes Coarse ADC Requirements

- Offset of coarse ADC need only be accurate to Vref/4
- Half of the voltage swing is used for over-range

Voltage Sub-Ranges: With Overlap

$$2V_{in} + V_{ref}$$

Voltage Sub-Ranges: Offset Margin +/-Vref/4

 $2V_{in}$

Residue Plot: with Redundancy

Voltage Sub-Ranges: 2-bit (4x Gain)

Voltage Sub-Ranges: 3-bit (8x Gain)

at expense of potential over-range

Less than 1-bit-per-stage Pipelined ADC

ISSCC 2008 Tutorial

Voltage Sub-Ranges: Single Comparator

Voltage Sub-Ranges: Example A=1.6

Radix vs. Margin

Pipelined ADC: Radix Less Than Two

Doesn't Need to Be Switched Cap

Current-Mode ADC Stage

© 2002 IEEE International Solid-State Circuits Conference © 2002 IEEE

Ken Poulton, Robert Neff, et al., ISSCC 2002, ISSCC 2003

Successive Approximation From Pipelined Ideas

Switched Capacitor Implementation Charge Sharing Principle

Successive Approximation ADC

SAR with Redundancy

Example Design Switched Capacitor Based 10-bit 200-MS/s

ISSCC 2008 Tutorial

Summary of Design Issues

- Capacitor size based on KT/C
 - C total = 225fF
- Opamp open-loop gain
 - Ao < 60dB
 - Calibration or correlated double-sample can reduce gain requirement
- Jitter
 - Clock jitter < 1.25ps</p>
- No Sample & Hold
 - Need care to ensure MDAC and CADC synchronization
- 2-Stage opamp
 - Dual common-mode feedback loop
 - Tail source on second-stage
- 2 bits per stage
 - 3-bit flash
- Coarse ADC
 - Use built-in reference to reduce capacitive load
 - Will require calibration

Physical Limitations

ISSCC 2008 Tutorial

ADC Basics: 3-Input Device

Thermal Noise Limitations

Output Noise Spectral Density

$S_n(f) = S_r(f)$	1	2
	$1 + j2\pi fRC$	

Expected Noise Power

$$v_n^2 = 4kTR \int_0^\infty \frac{1}{1 + (2\pi fRC)^2} df = \frac{4kTR}{2\pi RC} \int_0^\infty \frac{1}{1 + x^2} dx = \frac{2kT}{\pi C} \int_0^{\frac{\pi}{2}} d\theta$$

$$v_n^2 = \frac{kT}{C}$$
Result is independent of R. Implies a more fundamental physical law

Equipartition Theorem

Expected Value of Thermal Energy for 1-degree of freedom

$$E = \frac{1}{2}kT$$

Expected Value of Electrical Energy Stored on Capacitor

$$E = \frac{1}{2} C v_n^2$$

Expected Value of Squared Voltage on Capacitor

$$v_n^2 = \frac{kT}{C}$$

RMS Quantization Noise

Noise Requirements: Example Calculation

$$\frac{1}{2}\sigma_{T}^{2} \cong \sigma_{AMP}^{2} + \sigma_{KT}^{2} = \frac{1}{2} \cdot \frac{V_{LSB}^{2}}{12}$$

Assume equal contribution of noise dominated from AMP and KT/C.

$$\sigma_{\rm AMP} = \sigma_{\rm KT} = \frac{1}{2} \cdot \frac{V_{\rm LSB}}{\sqrt{12}} \approx \frac{V_{\rm LSB}}{7}$$

For 1-Vpp input and a 10-bit ADC with a bandwidth of 1-GHz. The LSB is approximately 1-mV so that the rms noise requirement of the amp and KT/C is 144uV

$$\frac{KT}{C} = (144\,\mu\text{V})^2$$
$$C = 225\text{fF}$$

$$4KTBR_{EQ} = (144\,\mu\text{V})^2$$
$$R_{EQ} = 1100\Omega$$

Noise Requirements: 12-bit Example

For 1-Vpp input and a 12-bit ADC. The LSB is approximately 0.25-mV so that the rms noise requirement of the amp and KT/C is 36uV

$$\frac{KT}{C} = (36\,\mu\text{V})^2$$

$$\frac{C = 3.6\text{pF}}{R_{EQ}} = (36\,\mu\text{V})^2$$

12-bit Example: High Vref and High Vdd

For 2-Vpp input and a 12-bit ADC. The LSB is approximately 0.5-mV so that the rms noise requirement of the amp and KT/C is 72uV

$$\frac{KT}{C} = (72\,\mu\text{V})^2$$

$$4KTBR_{EQ} = (72\,\mu\text{V})^2$$

$$R_{EQ} = 275\Omega$$

For High Accuracy ADCs

- The higher the Vref the better
- This requires large voltage (High Vdd is essential)
- gm of 1/70 requires a lot of current
- Good to have gain in Sample & Hold to ease noise requirements of MDAC
- Can give up some SNR performance to ease power requirements: Giving up an additional 0.5-bits of noise cuts the cap in half and doubles Req

Minimal Capacitance for a Given Ideal SNR

Thermal Noise set to Quantization Noise

$$v_{rms} = \sqrt{\frac{kT}{C}} = \frac{V_{pp}}{2^n \sqrt{12}}$$

Limitations Due to Timing Jitter for Sine Input

Expression for SNR due to Jitter

$$\Delta V_{rms} = \Delta t_{rms} (\pi f_{in}) \cdot V_{PP} \cdot \sqrt{avg} (\cos^2 [2\pi f_{in}t]) = 2\pi f_{in} \Delta t_{rms} \frac{V_{PP}}{2\sqrt{2}}$$

$$\frac{\Delta V_{rms}}{V_{inrms}} = \frac{1}{SNR} = 2\pi f_{in} \Delta t_{rms}$$

Jitter Requirement for 10-bit

SNR due to Quantization = $6.02(10) + 1.76 \sim 62$ dB

$$\frac{1}{62dB} = 2\pi f_{\rm in} \Delta t_{\rm rms}$$

$$f_{in}$$
 = Nyquist @ f_s =200-MHz

$$\Delta t_{rms} = \frac{T_s}{\pi \cdot SNR} = \frac{5\text{ns}}{\pi \cdot SNR}$$

$$\Delta t_{rms} < 1.26 \mathrm{ps}$$

ADC Speed and Resolution

B. Murmann, "ADC Performance Survey 1997-2007," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.

Circuit Implementation Switched Capacitor Based 10-bit 200-MS/s

ISSCC 2008 Tutorial
Pipelined ADC Architecture

Thick Oxide vs. Thin Oxide

Noise Limited Corner: Normalized Energy vs. SNR

Normalizing ADC power by the KT/C Limit (P_s) is useful

- Clearly shows State of the Art with respect to P_s
- Shows best high SNR ADCs ~ 100x Thermal Power Limit
- Identifies noise limited circuit corner at roughly 11-bits

Open-Loop DC Gain Requirement

Closed loop Gain

$$A = \frac{A_o}{1 + A_o\beta} \cong \frac{1}{\beta} \cdot \left(1 - \frac{1}{A_0\beta}\right)$$

Normalized Gain Error

Accuracy Required Scales with Gain

$$\varepsilon = A\varepsilon_0 \approx \frac{\varepsilon_0}{\beta}$$

Closed Loop Gain Independent of β

[3] 30.1 An Over-60dB True Rail-to-Rail Performance Using Correlated Level Shifting and an Opamp with 30dB Loop Gain 1:30 PM *B. Gregoire, U-K. Moon*

Sample & Hold: Yes or No

Total Capacitance Increases with SHA by 4x
Total power increase 2-4x

Pipelined ADC with No Sample & Hold

[4] I. Mehr and L. Singer, "A 55-mW 10-bit 40-Msample/s Nyquist-rate CMOS ADC," *IEEE J. Solid-State Circuits*, vol. 35, pp. 318–325, Mar. 2000.

[5] 12.6 A 14b 100MS/s Pipelined ADC with a Merged Active S/H and First MDAC 11:15 AM

B. Lee, B. Min, G. Manganaro, J. W. Valvano

ISSCC

Scaling

 $\eta = 2$ Noise contribution (input referred) of each stage is equal

 $\eta = 1$ Noise contribution is reduced by $\sqrt{2}$ for each stage Recommended scaling [1,2]

 Y. Chiu, "High-Performance Pipeline A/D Converter Design in Deep-Submicron CMOS," *PhD Dissertation, UC Berkeley*,2004.
 D. W. Cline and P. R. Gray, "A power optimized 13-b 5 MSamples/s pipelined analog-to-digital converter in 1.2µm CMOS," *IEEE J. Solid-State Circuits*, vol. 31, no. 3, pp. 294-303, March 1996.

Number of Bits Resolved per Stage: Tau

Number of Bits Resolved per Stage: Settling

Two-Stage Amplifier with Dual CMFB

1	

[6] A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input

Wenhua Yang, Dan Kelly, luri Mehr, Mark T. Sayuk, and Larry Singer, IEEE JSSC, vol. 36, no. 12, Dec 2001. pp 1931-1936.

[7] A cost-efficient high-speed 12-bit pipeline ADC in 0.18-/spl mu/m digital CMOS Andersen, T.N.; Hernes, B.; Briskemyr, A.; Telsto, F.; Bjornsen, J.; Bonnerud, T.E.; Moldsvor, O. Solid-State Circuits, IEEE Journal of Volume 40, Issue 7, July 2005 Page(s): 1506 - 1513

Pipelined ADC Switched Capacitor MDAC

MDAC can be implemented efficiently as a Switched Capacitor Circuit

Opamp Sharing: Adjacent

Opamp Sharing: Ping-Pong

Opamp Sharing: Ping-Pong

All Opamps Shared on Alternate Clock Phases Requires dual cap arrays

Incomplete settling causes signal dependant distortion

Coarse ADC

SC Reference Gen, Abo [8]

Built-in Mismatch

[12.3] A 150MS/s 133µW 7b ADC in 90nm Digital CMOS Using a Comparator-Based Asynchronous Binary-Search Sub-ADC 9:30 AM *G. Van der Plas, B. Verbruggen*

Adds load to MDAC Cap ratios get big beyond 2-3 bits per stage Lowest power Needs calibration

Design Issues: Advanced Concepts

- Bootstrapped switch
 - Not needed at 10-bits, but necessary beyond, Abo [8], Hui Pan [9]
- Opamp Sharing Ping Pong
 - Use dual cap array to utilize opamp at all times, Gupta [10]
 - Be careful for charge sharing (cross-talk, or ISI)
- Adaptive biasing
 - Power dissipation scaled optimally with sample rate, Geelen [11]
- Time Interleaving
 - Poulton [12], Gupta [10]

- Calibration
 - Big improvements in performance and huge power reduction
 - Boris Murmann, Ian Galton, Paul Gray, Steve Lewis, Bang Sup Song and more

Advanced Concepts References

[8] A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter Abo, A.M.; Gray, P.R. Solid-State Circuits, IEEE Journal of Volume 34, Issue 5, May 1999 Page(s):599 - 606

[9] A 3.3 V, 12b, 50MSample/s A/D converter in 0.6 μm CMOS with over80 dB SFDR Hui Pan Segami, M. Choi, M. Jing Cao Hatori, F. Abidi, A. JSSC, vol. 35, issue 12, dec 2000, pp. 1769-1780

[10] A 1-GS/s 11-bit ADC With 55-dB SNDR, 250-mW Power Realized by a High Bandwidth Scalable Time-Interleaved Architecture

Gupta, S. K.; Inerfield, M. A.; Wang, J. Solid-State Circuits, IEEE Journal of Volume 41, Issue 12, Dec. 2006 Page(s):2650 - 2657

[11] A 90nm CMOS 1.2V 10b Power and Speed Programmable Pipelined

ADC with 0.5pJ/Conversion-Step, G. Geelen, E. Paulus, D. Simanjuntak, H. Pastoor, R. Verlinden IEEE ISSCC, Digest of Tech Papers, feb 2006, paper # 12.1

[12] A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 /spl mu/m CMOS

Poulton, K.; Neff, R.; Setterberg, B.; Wuppermann, B.; Kopley, T.; Jewett, R.; Pernillo, J.; Tan, C.; Montijo, A. Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International Volume, Issue, 9-13 Feb. 2003 Page(s): 318 - 496 vol.1

Books

Data Conversion System Design Behzad Razavi

CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters Rudy van de Plassche

CMOS Data Converters for Communications Gustavsson, Wikner and Tan

Books

Digitally Assisted Pipeline ADCs Murmann & Boser

Analog Integrated Circuit Design Johns & Martin

CMOS Analog Circuit Design: Allen & Holberg

Books

CMOS Mixed-Signal Circuit Design

R. Jacob Baker

SEARCH INSIDE!

The Data Conversion Handbook Walt Kester

Analog Design Essentials: Willy Sansen

Analog Design For CMOS VLSI System Franco Maloberti

Thank You

Thanks to Steve Lewis [13] for inventing the pipelined ADC and countless others researchers and designers for years of continued improvement

[13] S. H. Lewis and P. R. Gray, "A pipelined 5-Msample/s 9-bit analog-to digital converter," *IEEE J. Solid-State Circuits*, vol. SC-22, pp. 954–961, Mar. 1987.

ISSCC 2008 Tutorial

Enjoy The Game

