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Applications: ADC Performance is CriticalApplications: ADC Performance is Critical

§ Dramatic improvement in converter performance is 

required for emerging IEEE communication standards 

§ Data converters will be a key enabling technology to 

realize ICs at the appropriate power

Base StationsBase StationsBase StationsBase Stations

Disc DrivesDisc DrivesDisc DrivesDisc Drives
Mobile PhonesMobile PhonesMobile PhonesMobile Phones

NetworkingNetworkingNetworkingNetworking

ADC

Broadband Broadband Broadband Broadband 
WirelessWirelessWirelessWireless
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Architecture vs. Speed and ResolutionArchitecture vs. Speed and Resolution
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Pipelined vs. Folding: A Personal HistoryPipelined vs. Folding: A Personal History
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Pipelined vs. Folding: A Personal HistoryPipelined vs. Folding: A Personal History
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Pipelined ADCs Speed and ResolutionPipelined ADCs Speed and Resolution
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What is a “Pipelined” ADCWhat is a “Pipelined” ADC
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What is a “Pipelined” ADCWhat is a “Pipelined” ADC

Pipelined

(overlapping / redundancy)

Residue

Amplification

Self-Similar

Efficient Calculation Machine Similar to Systolic Arrays – FFT Butterfly Calculation

Switched Capacitor

Usually

but not

necessarily

Subranged
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5-bit Flash: Ruler Analogy5-bit Flash: Ruler Analogy

How does the Human Brain

Perform 5-bit Quantization?

LSB = 1cm = 100-miles

1800 miles
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15-bit Spatial Sub-Ranging ADC15-bit Spatial Sub-Ranging ADC
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Coarse Estimate – Center - AmplifyCoarse Estimate – Center - Amplify
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2nd-Stage Sub-range2nd-Stage Sub-range
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Repeat Centering and Residue AmplificationRepeat Centering and Residue Amplification
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Self SimilaritySelf Similarity

Matryoshka / Russian Nesting Dolls

Stage-1
vi

C

ADC

clk

VREF

Residue

DAC

clk

VREF

Σ
+

-

Fractal Geometry of Nature

  © 2008 IEEE International Solid-State Circuits Conference             © 2008 IEEE



3rd-Stage Sub-range3rd-Stage Sub-range
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4th Stage - Features Large Enough to Quantize4th Stage - Features Large Enough to Quantize
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4-Stage 15-bit Pipeline ADC4-Stage 15-bit Pipeline ADC
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Challenges in Pipeline ADCs: Offsets & DACChallenges in Pipeline ADCs: Offsets & DAC
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Challenges in Pipeline ADCs: Gain and Non-linearityChallenges in Pipeline ADCs: Gain and Non-linearity
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Limitations in accuracy due to gain errors and amplifier non-linearity
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ISSCC 2008 Tutorial 

ADC = DAC + Comparison

Successive Approximation &

Relationship to Pipelined ADCs

ADC = DAC + Comparison

Successive Approximation &

Relationship to Pipelined ADCs
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Signal vs. DAC Comparison: Inverse Transfer FunctionSignal vs. DAC Comparison: Inverse Transfer Function

Approximation Error

REFSIG VCV ˆ−=ε
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DAC Limits Accuracy
§ Drive DAC to minimize error

§ ADC accuracy depends on DAC
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Successive Approximation ADC (SAR)Successive Approximation ADC (SAR)

Use Feedback to Drive Error to Zero
§ Successive Approximation

§ Iteratively change DAC code until error is minimized
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Ĉ

clk

REFV

ε

SIGV̂

LOGIC

S
A

R

clk

  © 2008 IEEE International Solid-State Circuits Conference             © 2008 IEEE



ADC Basics: DAC Successive ApproximationADC Basics: DAC Successive Approximation

SIGV ε

LOGIC

clk

Σ

DAC

+

-
REFV

0Ĉ
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DACs are identical
§ Error contribution from each DAC affects performance equally

§ Full precision required at each node
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ADC Basics: DAC Binary WeightingADC Basics: DAC Binary Weighting
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DACs are Binary Weighted
§ Error contribution from DAC mismatch is scaled by reference

§ MSB DACs must have better matching than LSB DACs
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Binary Weighting Using Gain BlocksBinary Weighting Using Gain Blocks

DACs are identical, but see different gain to output
§ Error contribution from each DAC is proportional to gain in signal path

§ MSB DAC is most critical
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4Ĉ

Σ

DAC

+

-

REFV

5Ĉ
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Binary Weighting with Distributed Gain (a0=1)Binary Weighting with Distributed Gain (a0=1)

DACs are identical: Gain is Distributed
§ MSB DAC most critical because it sees largest gain

§ Feed-forward path is now modular. All sections are identical
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Dominant Error SourcesDominant Error Sources
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Noise Summary
§ The larger the gain at the input less the impact 

of noise in distortion from subsequent stages

§ Dominant Noise Term is from input stage
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Transition from Feedback-Based to PipelineTransition from Feedback-Based to Pipeline
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0Ĉ1Ĉ2Ĉ3Ĉ4Ĉ5Ĉ

Feedback not allowed for pipeline design
§ Can not afford to wait for signal to propagate down the chain

§ Coefficients must be set by Feed-forward path

§ Error Sources and Expression of Analog Output of DACs do not change

§ Problem is now is to set Coefficients without overflow of internal nodes

Broken feedback
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Adding Analog Delay Allows PipelineAdding Analog Delay Allows Pipeline

Sample and Hold as an Analog Delay
§ With analog memory each section works on a single residue

§ Latency increases, but throughput is high with one complete 

conversion per clock cycle
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ADCs in Feed-Forward Path Replace FeedbackADCs in Feed-Forward Path Replace Feedback

Final result does NOT depend on feed-forward ADCs
§ Provided error “e” is minimized, accuracy is identical to SAR-based ADC

§ Coarse ADC job is to get “close” and avoid overflow at intermediate nodes
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ISSCC 2008 Tutorial 

Simple 1-bit-per-stage

Pipelined ADC

Simple 1-bit-per-stage

Pipelined ADC
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Simple Radix-2 Pipelined ADCSimple Radix-2 Pipelined ADC

IV

φ

Stage

n-1

Stage

n-2

Stage

n-3

Stage

1

Stage

0
SH

refV

1−nD 2−nD 3−nD 1D 0D

A

φ

CMP

refV

3−nD

ΣΣΣΣ2−nV

2−nV1−nV 3−nV 2V 1V

3−nV

DAC

1-bit

  © 2008 IEEE International Solid-State Circuits Conference             © 2008 IEEE



Voltage Sub-Ranges: No OverlapVoltage Sub-Ranges: No Overlap

2

refV

0

Vref

-Vref

0

1

0

1

0

1

2

ref

in

V
V +

2

refV

2

ref

in

V
V − refin VV +2 refin VV −2

  © 2008 IEEE International Solid-State Circuits Conference             © 2008 IEEE



Residue Plot: Input to Residue Transfer FunctionResidue Plot: Input to Residue Transfer Function
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No margin in Coarse ADC
§ Offset of coarse ADC must be at full accuracy

§ No over-range margin in amplitude
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Radix-2 Pipelined ADC: Residue VoltagesRadix-2 Pipelined ADC: Residue Voltages
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Slice Architecture: Pipelined ADCSlice Architecture: Pipelined ADC
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1-bit-per-Stage ADC with Input Near Zero1-bit-per-Stage ADC with Input Near Zero
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Voltage Sub-Ranges: Comparator OffsetVoltage Sub-Ranges: Comparator Offset
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ISSCC 2008 Tutorial 

RedundancyRedundancy
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Long Division: Natalya’s 6th Grade HomeworkLong Division: Natalya’s 6th Grade Homework
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Voltage Sub-Ranges: With OverlapVoltage Sub-Ranges: With Overlap
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Residue Plot: with RedundancyResidue Plot: with Redundancy
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Redundancy Relaxes Coarse ADC Requirements
§ Offset of coarse ADC need only be accurate to Vref/4

§ Half of the voltage swing is used for over-range
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Voltage Sub-Ranges: With OverlapVoltage Sub-Ranges: With Overlap
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Voltage Sub-Ranges: Offset Margin +/-Vref/4Voltage Sub-Ranges: Offset Margin +/-Vref/4
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Residue Plot: with RedundancyResidue Plot: with Redundancy
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Voltage Sub-Ranges: 2-bit (4x Gain)Voltage Sub-Ranges: 2-bit (4x Gain)
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Voltage Sub-Ranges: 3-bit (8x Gain)Voltage Sub-Ranges: 3-bit (8x Gain)
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Overhead is high (2x)
§ Only using half the available voltage range

§ Can reduce redundancy and use more range

at expense of potential over-range
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ISSCC 2008 Tutorial 

Less than 1-bit-per-stage

Pipelined ADC

Less than 1-bit-per-stage

Pipelined ADC
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Voltage Sub-Ranges: Single ComparatorVoltage Sub-Ranges: Single Comparator
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Voltage Sub-Ranges: Example A=1.6Voltage Sub-Ranges: Example A=1.6
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Radix vs. MarginRadix vs. Margin
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Pipelined ADC: Radix Less Than TwoPipelined ADC: Radix Less Than Two
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Doesn’t Need to Be Switched Cap Doesn’t Need to Be Switched Cap 

Ken Poulton, Robert Neff, et al. , ISSCC 2002, ISSCC 2003
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Vref

Switched Capacitor Implementation

Charge Sharing Principle

Successive Approximation From Pipelined IdeasSuccessive Approximation From Pipelined Ideas
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Successive Approximation ADCSuccessive Approximation ADC

Ae

vacm

- +

Ae
+ -

AA

BB

A

BB

C1 C2

vip

vrefn
vrefp

BB

A

BB

CnC3

AA

BB

A

BB

C1 C2

vin

vrefn
vrefp

BB

A

BB

CnC3

clk

L
o
g
ic

  © 2008 IEEE International Solid-State Circuits Conference             © 2008 IEEE



SAR with RedundancySAR with Redundancy
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ref

IN

n

nV

V

Signal

Radix 2

No Redundancy

§ Full settling on 

each step

§ Once mistake is 

made, you can’t 

recover

Radix 1.6

With Redundancy

§ 3-bit settling

§ Overlap of ranges 

allows for recovering 

from mistakes

10-bit SAR

§ 10 steps

§ 10*ln(2) time constants

§ 69 tau

10-bit SAR

§ 14 steps

§ 3*ln(2) time constants

§ 30 tau

Error
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ISSCC 2008 Tutorial 

Example Design

Switched Capacitor Based

10-bit

200-MS/s

Example Design

Switched Capacitor Based

10-bit

200-MS/s
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Summary of Design IssuesSummary of Design Issues

§ Capacitor size based on KT/C
§ C total = 225fF

§ Opamp open-loop gain
§ Ao < 60dB

§ Calibration or correlated double-sample can reduce gain requirement

§ Jitter
§ Clock jitter < 1.25ps

§ No Sample & Hold
§ Need care to ensure MDAC and CADC synchronization

§ 2-Stage opamp
§ Dual common-mode feedback loop

§ Tail source on second-stage

§ 2 bits per stage
§ 3-bit flash 

§ Coarse ADC
§ Use built-in reference to reduce capacitive load

§ Will require calibration
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ISSCC 2008 Tutorial 

Physical LimitationsPhysical Limitations
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ADC Basics: 3-Input DeviceADC Basics: 3-Input Device

+
-

REFVINV Clk

ADC Core

REFV

Clk

INV

ADC Performance depends on ALL THREE inputs

  © 2008 IEEE International Solid-State Circuits Conference             © 2008 IEEE



Thermal Noise LimitationsThermal Noise Limitations

C
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R
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sVsV rn

+
=

1

1
)()(

Transfer Function

Output Noise Spectral Density
2

21
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)()(
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fSfS rn

π+
=

( ) ∫∫∫ =
+

=
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=
∞∞
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21

1
4

π

θ
πππ

d
C

kT
dx

xRC

kTR
df

fRC
kTRvn

Expected Noise Power

C

kT
vn =

2
Result is independent of R.

Implies a more fundamental 

physical law
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Equipartition TheoremEquipartition Theorem

C

nv
Circuit

In

Thermal

Equilibrium

Expected Value of Thermal Energy for 1-degree of freedom

kTE
2

1
=

Expected Value of Electrical Energy Stored on Capacitor

2

2

1
nCvE =

Expected Value of Squared Voltage on Capacitor

C

kT
vn =

2
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RMS Quantization NoiseRMS Quantization Noise

LSB
2

1
V− LSB

2

1
V

LSB1 V

Quantization Error Probability Density Function

LSB
LSB 289.0
12

V
V

VQ ==σ rms Quantization Noise

122

PP

nQ

V
V =σ

Where VPP is the full-scale

Voltage and n is the # of bits

Uniform assumption for

Quantization noise
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Noise Requirements: Example CalculationNoise Requirements: Example Calculation

Assume equal contribution of noise dominated from AMP and KT/C. 

122

1

2

1
2

22

AMP

2 LSB
KTT

V
⋅=+≅ σσσ

7122

1
AMP

LSBLSB
KT

VV
≈⋅==σσ

For 1-Vpp input and a 10-bit ADC with a bandwidth of 1-GHz. The LSB is 

approximately 1-mV so that the rms noise requirement of the amp and 

KT/C is 144uV

( )2V144µ=
C

KT
( )2EQ V1444 µ=KTBR

fF225=C Ω=1100EQR
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Noise Requirements: 12-bit ExampleNoise Requirements: 12-bit Example

For 1-Vpp input and a 12-bit ADC. The LSB is approximately 0.25-mV so 

that the rms noise requirement of the amp and KT/C is 36uV

( )2V36µ=
C

KT
( )2EQ V364 µ=KTBR

pF6.3=C Ω= 70EQR
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12-bit Example: High Vref and High Vdd12-bit Example: High Vref and High Vdd

For 2-Vpp input and a 12-bit ADC. The LSB is approximately 0.5-mV so 

that the rms noise requirement of the amp and KT/C is 72uV

( )2V72µ=
C

KT
( )2EQ V724 µ=KTBR

fF900=C Ω= 275EQR

For High Accuracy ADCs
§ The higher the Vref the better

§ This requires large voltage (High Vdd is essential)

§ gm of 1/70 requires a lot of current

§ Good to have gain in Sample & Hold to ease noise requirements of MDAC

§ Can give up some SNR performance to ease power requirements: Giving up 

an additional 0.5-bits of noise cuts the cap in half and doubles Req
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Minimal Capacitance for a Given Ideal SNRMinimal Capacitance for a Given Ideal SNR
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V
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kT
v ==Thermal Noise set to Quantization Noise

Minimum value of input capacitance
n

ppV

kT
C 2

2
2
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⋅=

Process limited signal

Capacitance ~ 50fF

Noise
 lim

ite
d 

Capacita
nce

 fo
r 1

Vpp

Corner ~ 9-10bits

3.6pF @ 80dB

Additional

Slide
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Limitations Due to Timing Jitter for Sine InputLimitations Due to Timing Jitter for Sine Input
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Expression for SNR due to JitterExpression for SNR due to Jitter
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Jitter Requirement for 10-bitJitter Requirement for 10-bit

t∆

V∆PPV

rmstf
dB

∆= in2
62

1
π

SNR due to Quantization = 6.02(10) + 1.76 ~ 62dB 

fin = Nyquist @ fs =200-MHz

SNRSNR

T
t s
rms

⋅
=

⋅
=∆

ππ

ns5

ps26.1<∆ rmst

  © 2008 IEEE International Solid-State Circuits Conference             © 2008 IEEE



ADC Speed and ResolutionADC Speed and Resolution

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

10 20 30 40 50 60 70 80 90 100 110 120

SNDR [dB]

B
W

 [
H

z
]

ISSCC 1997-2006

VLSI 1997-2006

ISSCC 2007

VLSI 2007

S/H with 1psrms jitter

Pipelined

B. Murmann, "ADC Performance Survey 1997-2007," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.

1.26ps
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ISSCC 2008 Tutorial 

Circuit Implementation

Switched Capacitor Based

10-bit

200-MS/s

Circuit Implementation

Switched Capacitor Based

10-bit

200-MS/s
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Pipelined ADC ArchitecturePipelined ADC Architecture

IV

φ

Stage

n-1

Stage

n-2

Stage

n-3

Stage

1

Stage

0
SH

refV

1−nD 2−nD 3−nD 1D 0D

A

φ refV

3−nD

ΣΣΣΣ2−nV

2−nV1−nV 3−nV 2V 1V

3−nV

DACADC
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Thick Oxide vs. Thin OxideThick Oxide vs. Thin Oxide

CMFB CMFB

Vdd = 2.5V

Vdd = 1.2V

2

1

ppV
C ∝

Doubling voltage swing will reduce

Capacitive load by factor of 4x
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75

Noise Limited Corner: Normalized Energy vs. SNRNoise Limited Corner: Normalized Energy vs. SNR

§ Normalizing ADC power by the KT/C Limit (Ps) is useful

§ Clearly shows State of the Art with respect to Ps

§ Shows best high SNR ADCs ~ 100x Thermal Power Limit

§ Identifies noise limited circuit corner at roughly 11-bits

[6] B. Murmann, T. Sundstrom and Christer Svenson, 

“On the Power Dissipation of High-Speed Analog-to-

Digital Converters," IEEE Trans. Circuits and Systems,

[to be published] submitted 26 Nov 2007.

Additional

Slide
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Open-Loop DC Gain RequirementOpen-Loop DC Gain Requirement

IV A0
−

β

OV









−⋅≅

+
=

βββ 0

1
1

1

1 AA

A
A

o

o

Closed loop Gain

Normalized Gain Error

β
ε

0

1

A
=

Accuracy Required Scales with Gain

β

ε
εε 0
0 ≈= A

Closed Loop Gain Independent of β

n

o

A 2
1

0 ≈>
ε

[3] 30.1 An Over-60dB True Rail-to-Rail Performance Using Correlated Level Shifting

and an Opamp with 30dB Loop Gain

1:30 PM

B. Gregoire, U-K. Moon
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Sample & Hold: Yes or NoSample & Hold: Yes or No

No SHA: Total Input Referred Noise Power

22

nTOT vv =

222

ADCSHTOT vvv +=

SHA: Input Referred Noise Power

To achieve KT/C Noise Performance with No SHA

2

2
22 n

ADCSH

v
vv ==

C

kT

C

kT

C

kT

22
+=

Total Capacitance Increases with SHA by 4x

§ Total power increase 2-4x}

ADC
ΣΣΣΣ

nv

IV

C

IV
ADCSH

2C
ΣΣΣΣΣΣΣΣ

SHv ADCv
2C

  © 2008 IEEE International Solid-State Circuits Conference             © 2008 IEEE



Pipelined ADC with No Sample & HoldPipelined ADC with No Sample & Hold

Σ

DAC

+

-

REFV

5Ĉ
CADC

REFV

MDAC

MDACφ

CADCφ

IV

Sampling occurs in two places

§ Dual sampling must be synchronized to avoid skew

[5] 12.6 A 14b 100MS/s Pipelined ADC with a Merged Active S/H and 

First MDAC 11:15 AM

B. Lee, B. Min, G. Manganaro, J. W. Valvano

[4] I. Mehr and L. Singer, “A 55-mW 10-bit 40-Msample/s Nyquist-rate

CMOS ADC,” IEEE J. Solid-State Circuits, vol. 35, pp. 318–325, Mar.

2000.
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ScalingScaling

IV A A A

C

ηA

C

η2A

C

2=η Noise contribution (input referred) of each stage is equal

1=η Noise contribution is reduced by       for each stage

Recommended scaling [1,2]
2

[1] Y. Chiu, "High-Performance Pipeline A/D Converter Design in Deep-

Submicron CMOS," PhD Dissertation, UC Berkeley,2004.

[2] D. W. Cline and P. R. Gray, "A power optimized 13-b 5 MSamples/s

pipelined analog-to-digital converter in 1.2µm CMOS," IEEE J. Solid-

State Circuits, vol. 31, no. 3, pp. 294-303, March 1996.
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Number of Bits Resolved per Stage: TauNumber of Bits Resolved per Stage: Tau

IV
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n
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Closed-loop time constant of MDAC amplifier
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2C

1C LC

Feedback Factor

( )

mm g
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g

C 11−
+≈τ

With scaling tau is roughly

Independent of gain

§ slightly faster with smallest gain

Load is reduced by scaling CACL =
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Number of Bits Resolved per Stage: SettlingNumber of Bits Resolved per Stage: Settling

IV

φ

Stage

1

Stage

2

Stage

3

Stage

n-1

Stage

n

refV

1D 2D 3D 1−nD nD

2V1V 3V 2−nV 1−nV

settling of MDAC amplifier

)2ln(nts ⋅=τ

[1] Y. Chiu, "High-Performance Pipeline A/D Converter 

Design in Deep- Submicron CMOS," PhD Dissertation, 

UC Berkeley,2004.

[2] D. W. Cline and P. R. Gray, "A power optimized 13-b 

5 MSamples/s pipelined analog-to-digital converter in 

1.2µm CMOS," IEEE J. Solid- State Circuits, vol. 31, no. 

3, pp. 294-303, March 1996.

2 or 3 bits per stage is best choice

§ Shown in [1,2]

§ Agrees with survey of published ADCs

§ Beyond 3 bits, the coarse flash 

becomes problematic

for A=2

)2ln(9
2

3
2 ⋅⋅≈

mg

C
t

mg

C
t ⋅≈ 36.92

for A=4

)2ln(8
4

7
4 ⋅⋅≈

mg

C
t

mg

C
t ⋅≈ 7.94
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Two-Stage Amplifier with Dual CMFBTwo-Stage Amplifier with Dual CMFB

CMFB1 CMFB2

k k

[7] A cost-efficient high-speed 12-bit pipeline ADC in 0.18-/spl mu/m digital CMOS

Andersen, T.N.; Hernes, B.; Briskemyr, A.; Telsto, F.; Bjornsen, J.; Bonnerud, T.E.; Moldsvor, O.

Solid-State Circuits, IEEE Journal of

Volume 40, Issue 7, July 2005 Page(s): 1506 - 1513 

[6] A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR

at Nyquist Input

Wenhua Yang, Dan Kelly,Iuri Mehr, Mark T. Sayuk, and Larry Singer,

IEEE JSSC, vol. 36, no. 12, Dec 2001. pp 1931-1936.

Reduced swing due to tail source

§ dual diffpair has advantages

§ common-mode does not affect bias
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Pipelined ADC Switched Capacitor MDACPipelined ADC Switched Capacitor MDAC

Σ

DAC

+

-

REFV

5Ĉ
CADC

REFV

MDAC

MDACφ

CADCφ

IV

MDAC can be implemented efficiently as a 

Switched Capacitor Circuit
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1-bit MDAC Stage1-bit MDAC Stage
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1-bit MDAC Stage1-bit MDAC Stage
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+ -

- +

Sample the Input
§ Opamp reset not shown
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1-bit MDAC Stage1-bit MDAC Stage
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Top-Plate Switching
§ minimize signal dependent 

charge injection
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1-bit MDAC Stage1-bit MDAC Stage
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Release Bottom Plate
§ Non-overlapping clocks
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1-bit MDAC Stage1-bit MDAC Stage
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Subtract Reference and 

Multiply by 2x
§ Decision directed by coarse ADC
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1-bit MDAC Stage1-bit MDAC Stage
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Multiply by 2x
§ Decision directed by coarse ADC
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1-bit MDAC Stage1-bit MDAC Stage
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Add Reference and Multiply 

by 2x
§ Decision directed by coarse ADC
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Opamp Sharing: AdjacentOpamp Sharing: Adjacent

IV

A A A

C

ηA

C

η2A

C

A

Shared on Alternate Clock Phases
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Opamp Sharing: Ping-PongOpamp Sharing: Ping-Pong

IV

A A A

C

ηA

C

η2A

C

A A A

C
ηA

C η2A

C
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Opamp Sharing: Ping-PongOpamp Sharing: Ping-Pong

IV A A A

C

ηA

C

η2A

C

C
ηA

C η2A

C

All Opamps Shared on Alternate Clock Phases
§Requires dual cap arrays

§Incomplete settling causes signal dependant distortion
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Coarse ADCCoarse ADC

Vref

-Vref

IV

Ae
-

Ae
+

vacm

A

vip
vrefp

B
A

B

3CC

clk

vacm

vacm

A

vip
vrefp

B
A

B

3CC

R Ladder SC Reference Gen, Abo [8] Built-in Mismatch

Static Power dissipation Adds load to MDAC

Cap ratios get big beyond 2-3 

bits per stage

Lowest power

Needs calibration

[12.3] A 150MS/s 133µW 7b ADC in 90nm 

Digital CMOS Using a Comparator-Based

Asynchronous Binary-Search Sub-ADC

9:30 AM

G. Van der Plas, B. Verbruggen
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Design Issues: Advanced ConceptsDesign Issues: Advanced Concepts

§ Bootstrapped switch

§ Not needed at 10-bits, but necessary beyond, Abo [8], Hui Pan [9]

§ Opamp Sharing – Ping Pong

§ Use dual cap array to utilize opamp at all times, Gupta [10]

§ Be careful for charge sharing (cross-talk, or ISI)

§ Adaptive biasing

§ Power dissipation scaled optimally with sample rate, Geelen [11]

§ Time Interleaving

§ Poulton [12], Gupta [10]

§ Calibration

§ Big improvements in performance and huge power reduction

§ Boris Murmann, Ian Galton, Paul Gray, Steve Lewis, Bang Sup Song

and more ….

Paradigm shift
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Advanced Concepts ReferencesAdvanced Concepts References

[8] A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter

Abo, A.M.; Gray, P.R.

Solid-State Circuits, IEEE Journal of

Volume 34, Issue 5, May 1999 Page(s):599 - 606 

[9] A 3.3 V, 12b, 50MSample/s A/D converter in 0.6 µm CMOS with over80 dB SFDR

Hui Pan Segami, M. Choi, M. Jing Cao Hatori, F. Abidi, A.

JSSC, vol. 35, issue 12, dec 2000, pp. 1769-1780

[10] A 1-GS/s 11-bit ADC With 55-dB SNDR, 250-mW Power Realized by a High 

Bandwidth Scalable Time-Interleaved Architecture

Gupta, S. K.; Inerfield, M. A.; Wang, J.

Solid-State Circuits, IEEE Journal of

Volume 41, Issue 12, Dec. 2006 Page(s):2650 - 2657 

[11] A 90nm CMOS 1.2V 10b Power and Speed Programmable Pipelined

ADC with 0.5pJ/Conversion-Step, G. Geelen, E. Paulus, D. Simanjuntak, H. Pastoor, R. Verlinden

IEEE ISSCC, Digest of Tech Papers, feb 2006, paper # 12.1

[12] A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 /spl mu/m CMOS

Poulton, K.; Neff, R.; Setterberg, B.; Wuppermann, B.; Kopley, T.; Jewett, R.; Pernillo, J.; 

Tan, C.; Montijo, A. Solid-State Circuits Conference, 2003. Digest of Technical Papers. 

ISSCC. 2003 IEEE International Volume , Issue , 9-13 Feb. 2003 Page(s): 318 - 496 vol.1 
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BooksBooks

Data Conversion System Design

Behzad Razavi

CMOS Integrated Analog-to-Digital and 

Digital-to-Analog Converters

Rudy van de Plassche

CMOS Data Converters for 

Communications

Gustavsson, Wikner and Tan 
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BooksBooks

Digitally Assisted Pipeline ADCs

Murmann & Boser  

Analog Integrated Circuit Design

Johns & Martin

CMOS Analog

Circuit Design:

Allen & Holberg
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BooksBooks

CMOS Mixed-Signal Circuit Design

R. Jacob Baker  

The Data Conversion Handbook

Walt Kester

Analog Design Essentials:

Willy Sansen

Analog Design 

For CMOS VLSI

System

Franco Maloberti
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ISSCC 2008 Tutorial 

Thank YouThank You

Thanks to Steve Lewis [13] for inventing the pipelined ADC and countless others

researchers and designers for years of continued improvement

[13] S. H. Lewis and P. R. Gray, “A pipelined 5-Msample/s 9-bit analog-to digital

converter,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 954–961,

Mar. 1987.
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Enjoy The GameEnjoy The Game

Patriots  31 Giants  17
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